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The transition from freshwater to seawater is integral to the life history

of many fishes. Diverse migratory fishes express anadromous, catadromous,

and amphidromous life histories, while others make incomplete transits

between freshwater and seawater. The physiological mechanisms of

osmoregulation are widely conserved among phylogenetically diverse

species. Diadromous fishes moving between freshwater and seawater

develop osmoregulatory mechanisms for different environmental salinities.

Freshwater to seawater transition involves hormonally mediated changes in

gill ionocytes and the transport proteins associated with hypoosmoregula-

tion, increased seawater ingestion and water absorption in the intestine,
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and reduced urinary water losses. Fishes attain salinity tolerance through

early development, gradual acclimation, or environmentally or developmen-

tally cued adaptations. This chapter describes adaptations in diverse taxa

and the effects of salinity on growth. Identifying common strategies in

diadromous fishes moving between freshwater and seawater will reveal the

ecological and physiological basis for maintaining homeostasis in different

salinities, and inform efforts to conserve and manage migratory euryhaline

fishes.

1. INTRODUCTION

The understanding of euryhalinity in migratory fishes has been

investigated over the past century in numerous studies, but the focus has

mainly been on salmonid fishes (see McCormick, 2013, Chapter 5, this

volume). In recent decades, however, more research has centered on other

families including the lampreys, sturgeons, anguillid eels, herrings, and

tilapias. Functional approaches to defining life history patterns (e.g. Elliott

and Dewailly, 1995; Elliott et al., 2007; Franco et al., 2008) have effectively

defined estuarine guilds based on use patterns to inform estuarine ecology.

Estuaries provide critical habitat for many migratory species (McLusky

and Elliott, 2004; Rountree and Able, 2007) and are relied upon for

rearing, feeding, spawning, or simply serving as a corridor of migration

(Elliott and Hemingway, 2002). This chapter will focus on the transition

from freshwater (FW) to seawater (SW), which is an integral part of

the life history of many migratory fishes. For most migratory fishes,

such a transition generally punctuates longer residence times at more

stable salinities.

Migrants between FW and SW are collectively termed ‘‘diadromous’’

and geographic patterns of diadromy have been well described (McDowall,

1987). General trends in occurrence are linked to productivity differences

between FW and SW habitats (Gross, 1987; see also Shrimpton, 2013,

Chapter 7, this volume). The success or failure of these migrants is largely

dependent upon the timing of migration in the context of biotic and abiotic

environments (McCormick et al., 1998; Limburg, 2001), size at migration

(Saloniemi et al., 2004), and physiological preparation for changing

environment (e.g. Zydlewski et al., 2003). While the estuary serves as a

migratory corridor between the ocean and inland waters (Lobry et al., 2003),

it can also serve as an important staging area for physiological acclimation

(e.g. McCormick and Saunders, 1987), growth opportunity, and predator

avoidance (Klemetsen et al., 2003; Lepage et al., 2005).
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The idealized descriptions of anadromy, catadromy, and amphidromy

remain useful and defining archetypes for most euryhaline migrations.

These terms have considerable history (Myers, 1949; McDowall, 1987,

1988, 2007) and are widely applied (although the use of the term

‘‘amphidromy’’ continues to evolve). While they are useful heuristic

constructs, there is a growing appreciation for the complexity of life

histories. Many species exhibit divergent behaviors within a population –

or an individual. These divergent movements can be, and have been argued

to be, trophic movements rather than ‘‘true migrations’’ (Myers, 1949;

Dingle, 1996) but some of the distinctions are difficult to determine

empirically. The overview that follows is not intended to be exhaustive, or

to define terms (as such contributions have been prominently noted).

Rather, what follows is a sampling of the diversity of migratory patterns,

with some consideration of those patterns that do not fit neatly into the

three general patterns of diadromy. The physiological mechanistic and

behavioral patterns that allow these fish to exploit the estuarine

environment as part of their life history as they move from FW to SW

are also discussed.

2. LIFE HISTORY PATTERNS

2.1. Anadromy

Anadromous fishes spawn in FW and the young (usually) remain in this

dilute environment for some period before making a directed seaward

migration. As adults, these fish return to FW to reproduce (Fig. 6.1). The

period in SW is generally associated with accelerated growth opportunities

and, as a result, greater fecundity. This group is exemplified by salmonines

(McDowall, 1988; McCormick, 1994) but it is a conspicuous strategy across

many species. Although phylogenetically distant, sea lampreys (Petromyzon

marinus) have a distinct FW phase (ammocoete) that typically lasts for 3–7

years followed by a parasitic phase at sea, which is characterized by rapid

growth as they ingest large quantities of blood from (mainly) fish (Hardisty

and Potter, 1971; Beamish and Potter, 1975). Juvenile downstream

migration is linked to a metamorphosis as the eyeless, suspension feeding,

sediment-dwelling ammocoete transforms into a silvered, metamorph with

distinct eyes and an adult-like oral disc (Youson and Potter, 1979). Seaward

migration is bimodal, occurring in spring and fall (autumn), associated with

flow events (Beamish and Potter, 1975; McCormick et al., 1997).

Some sturgeon species have well-defined anadromous migrations, while

others make multiple movements into the estuary habitat through their life
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history (Doroshov, 1985). Atlantic sturgeons (Acipenser oxyrinchus)

migrate from the ocean into riverine habitat to spawn, and juvenile

anadromous sturgeons gradually enter SW within several years (Rochard

et al., 2001; Wilson and McKinley, 2004). Green sturgeons (Acipenser

medirostris) enter SW earlier than other sturgeon species, within 1–3 years

(Allen and Cech, 2007). Their eggs are relatively large and juveniles grow

rapidly (Deng et al., 2002); these may be adaptations for early entry into

the estuary.

Anadromous clupeids such as the American shad (Alosa sapidissima)

undergo migrations from coastal rivers of North America (Leggett and

Carscadden, 1978). Adults enter FW when river temperatures are between

14 and 201C (Leggett and Whitney, 1972). Spawning occurs in open water

beyond tidal influence, and the young generally remain in FW until autumn.
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Fig. 6.1. Idealized patterns of diadromous migration. Life histories proceed in a clockwise

fashion. Width of dark gray band represents variation in the salinity to which a given life stage

may be exposed. Shading on right side of panels indicates increased salinity. G: periods of

growth; S: spawning.
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The downstream migration of juvenile American shad is linked to declining

river temperatures (O’Leary and Kynard, 1986). The use of otolith

microchemistry has greatly informed the complexity of life history diversity

within this and other alosine species to demonstrate varied use of the estuary

by juveniles (Limburg, 1998).

Moronids demonstrate great flexibility in their anadromous life history.

For striped bass (Morone saxatilis), there are fully FW populations at the

northern and southern extents of their range (Rulifson and Dadswell,

1995; Haeseker et al., 1996; Carmichael et al., 1998), although anadromous

spawning migrations that ensure early development occurs in low salinities

are the norm (Gemperline et al., 2002; Wingate and Secor, 2008).

Similarly, white perch (Mornone americana) have considerable diversity in

migratory patterns linked to the estuary (Hanks and Secor, 2011). These

fish spawn in FW before returning to the estuary where they reside

through the winter (Setzler-Hamilton, 1991; Kerr and Secor, 2009). Larvae

are associated with the low-salinity zone of the estuarine turbidity

maximum and young-of-the-year juveniles are subsequently found rearing

in both FW and SW (North and Houde, 2001). Members of the same

population can be either resident or migratory (Kerr et al., 2009),

diverging in behavior only after transitioning into the juvenile stage (Kraus

and Secor, 2004).

2.2. Catadromy

Catadromous fishes spawn in SW and move into FW for a period of

growth (Fig. 6.1). While catadromy is more commonly associated with

tropical latitudes, American (Anguilla rostrata), European (A. anguilla), and

Japanese eels (A. japonica) exemplify the temperate pattern of catadromy

(Lecomte-Finiger, 1983; Sorensen, 1984). These fish are spawned in tropical

ocean waters and leptocephalus larvae are carried passively towards coastal

areas (Beumer and Harrington, 1980; Tsukamoto et al., 2003) before

invading the estuary as ‘‘glass eels’’. These juveniles acquire pigmentation

and migrate upstream to varying extents as ‘‘yellow eels’’. This growth phase

can be as long as 20 years before seaward migration as an adult ‘‘silver eel’’

(Hourdry, 1995).

Although conventional wisdom has assumed that the majority of eel

juveniles pass through the estuary (Tesch, 1977; Feunteun et al., 2003;

Fontaine et al., 1995), recent work demonstrates that many eels rear in

elevated salinities (Morrison and Secour, 2003; Arai et al., 2006; Thibault

et al., 2007; Jessop et al., 2008), making them facultative in their catadromy.

Facultative FW entry is related to energy status (Edeline, 2007; Bureau du
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Columbier et al., 2011), where slower growing eels migrate farther upstream

into FW, perhaps to avoid competition with conspecifics. These FW

migrants may comprise a large proportion of migrating adults (12–25%)

(Jessop et al., 2004; Morrison and Secour, 2003). Juveniles that rear in the

estuary for an extended period before recruiting into FW may also move

back and forth from FW to the estuary as subadults (Jessop et al., 2002,

2006, 2008). Recent work using telemetry and Sr:Ca ratios (Daverat et al.,

2006; Thibeault et al., 2007; Arai et al., 2009; Shrimpton, 2013, Chapter 7,

this volume) has provided convincing evidence for this variation (Fig. 6.2).

Although less well characterized, non-anguillid fishes also express

catadromous life histories. Mullets (Mugilidae) (Anderson, 1957; Nordlie,

2000; Cardona, 2006) and a few species of the Galaxiidae (Pollard, 1971) are

considered catadromous. Some species of tropical and subtropical gobies

and some sculpins may also be considered catadromous (McDowall, 2007),

although they have also been classified as amphidromous.

2.3. Amphidromy

The use and application of ‘‘amphidromy’’ has been less precise than

either ‘‘anadromy’’ or ‘‘catadromy’’. For anadromous and catadromous

migrations, patterns are tightly linked with reproduction (Klemetsen et al.,
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Fig. 6.2. Facultative catadromy in American eel. Using electron microprobe analysis of otoliths

(A) Sr:Ca ratios along transects can be measured (B) to retrospectively infer movements

between freshwater (FW) (low ratio) and seawater (SW) (high ratio). Arrows indicate onset of

metamorphosis (M), elver phase (E), and habitat transition (TC). Based on such inferred

histories (C) facultatively catadromous eels may employ a variety of contingent behaviors which

exploit FW and estuarine habitats to different extents. BW: brackish water. Reproduced with

permission from Jessop et al. (2008).

JOSEPH ZYDLEWSKI AND MICHAEL P. WILKIE258



2003; Quinn and Myers, 2004). In contrast, amphidromy has been

characterized by trophic movements between FW and SW such that there

is a growth phase in each biome. ‘‘Freshwater’’ and ‘‘seawater’’ amphi-

dromous patterns have been described (Myers, 1949; McDowall, 1987, 1988,

1992) and attributed to species such as shortnose sturgeon (Acipenser

brevirostrum) (Bain, 1997; Bemis and Kynard, 1997) and tarpon (Megalops

sp.) (Myers, 1949) based on early use of the term. As terminology has been

sharpened, however, these species fit the definition more poorly. Here, the

more precise definition of McDowall (2007) with specific criteria is

employed. Amphidromous fishes migrate seaward as larvae, experience a

brief growth phase in SW (or brackish water, BW), and return to FW as

small juveniles (usually less than 50 mm). This definition restricts the term to

what has previously been defined as ‘‘FW amphidromy’’ (the use of ‘‘FW’’

and ‘‘SW’’ amphidromy, as in McDowall, 1988, 1992, has been dropped).

There is a clear distinction between amphidromy and other diadromous

fishes. In general anadromous and catadromous fishes reduce or cease

feeding altogether upon entry of the habitat in which they will spawn

(McDowall, 2004), whereas amphidromous species have an extended

secondary growth phase in FW which is followed by spawning (Keith,

2003) (Fig. 6.1).

The majority of amphidromous fishes are found in the southern

hemisphere in the intertropical area. Particularly in island habitats,

amphidromy can be the dominant life history form (McDowall, 1999), as

exemplified by galaxiids (e.g. genus Galaxias). Spawning of amphidromous

galaxiids takes place in FW, followed by the larval growth phase in SW

(Waters et al., 2001) and then the return to rivers for the extended growth

period (McDowall, 1990). Although this is the general pattern, larvae may

be retained in the BW of the estuary before returning into FW river systems

(David et al., 2004). Similarly, the red-tailed goby (indigenous to islands of

the Indian Ocean and Pacific Ocean) spawns in FW followed by a short

pelagic growth period in the ocean (Keith and Marquet, 2002; Keith, 2003).

Amphidromous Sicydiine gobies enter into SW environment hours after

hatching, whereupon they enter a growth phase lasting 3–6 months (Keith

et al., 2008; Lord et al., 2010).

Migration back to FW habitats is generally associated with a striking

metamorphosis (Nishimoto, 1996; Nishimoto and Kuamo’o, 1997; Balon,

1990; Schoenfuss et al., 1997) that includes changes in skull morphology

including a shift from a subterminal to terminal mouth. Many gobies

develop fused pelvic fins during the period of FW entry, allowing them to

hang onto rocks and invade upstream habitat above waterfalls (Fitzsimons

et al., 2002; Taillebois et al., 2011). Lentipes concolor, found in the Hawaiian

Islands, is known to make impressive inland movements up waterfalls
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greater than 600 m in height (Nishimoto and Fitzsimons, 1986; Englund and

Filbert, 1997).

In bullies (Gobiomorphus spp.) and galaxiids, the completion of an

amphidromous life history can be facultative (Hicks et al., 2010). Larvae

may successfully develop in FW lakes even where ocean access is possible

(Closs et al., 2003; David et al., 2004; Hicks, 2012). The degree to which this

indicates plasticity within an individual rather than variability within a

population is unclear. Amphidromous species seem to be marked by lower

maternal investment than resident relatives. These fish have smaller eggs and

a less developed state at hatching, presumably adaptations for passive

downstream drift. Congeneric species that are completely fluvial in their life

histories hatch as larger, precocious young that can hold position in stream

flows. Such differences are observed among gobies of the genus Rhinogobius

and Japanese FW sculpin of the genus Cottus (Goto, 1990; Goto and

Andoh, 1990; Iguchi and Mizuno, 1999).

2.4. Freshwater-Linked and Seawater-Linked Estuarine Movements

Rather than being linked to a distinct growth or reproductive phase,

FW-linked estuarine migrants are generally opportunistic in their use of the

estuary. These fish generally experience salinity transitions that are transient

and usually low in salinity. Such patterns are best described as trophic

movements rather than migrations between environments. There is great

variation in osmotic tolerance among FW species. Ictalurid catfish and

yellow perch (Perca flavescens) have extremely low tolerances to salinities

above 1 ppt (Lutz, 1972; Furspan et al., 1984), yet other ‘‘stenohaline’’ FW

species are commonly observed in estuaries (Lowe et al., 2009). Juvenile

centrarchids are commonly found in the upper parts of estuaries (Hackney

and de la Cruz, 1981; Rozas and Hackney, 1983; Rogers et al., 1984) and it

is likely that the salinity gradient defines the extent of downstream

abundance. Limits to survival in BW may be restricted by limited

osmoregulatory capacity (Peterson, 1988; Meador and Kelso, 1990), by

reduced growth (Meador and Kelso, 1990; Peterson, 1991), or by preventing

successful spawning (Tebo and McCoy, 1964).

Local populations of FW-linked fishes may be adapted to tolerate

increased or fluctuating salinity. Some largemouth bass (Micropterus

salmoides) have developed greater tolerance to ion perturbation, rather

than increasing osmoregulatory capacity in elevated salinities (Meador and

Kelso, 1990; Lowe et al., 2009). Other centrarchids may likewise tolerate

modest salinities typical of an upper estuary. Peterson (1988) demonstrated

that red-ear sunfish (Lepomis microlophus) osmoregulated effectively up to
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8 ppt. Local adaptation to salinity exposure has also been observed in

western mosquitofish (Gambusia affinis) (Purcell et al., 2008).

While FW-linked movements are generally opportunistic, many SW

species are dependent upon the estuary for the early part of their life history

(Boesch and Turner, 1984; Kneib, 1997; Beck et al., 2001; Able, 2005).

Because of the clear link of movement into the estuary to these fishes’ life

histories, such movements can be considered migrations. The importance of

the estuary is often demonstrated by the strong link between estuarine

conditions and SW recruitment (Elliott et al., 1990; Thiel and Potter, 2001).

In general, these fish experience stable SW salinity for most of their life

cycle, and exploit the near-shore or estuary habitat at the larval and juvenile

stages. The facultative use of lower salinities confounds the use of

diadromous definitions. These SW fish lay pelagic eggs, often near the

coast or in the lower estuary, and parental investment is defined by selection

of spawning site (Wootton, 1999; Elliott and Hemingway, 2002; DeMartini

and Sikkel, 2006; Elliott et al., 2007).

Many benthic-oriented SW fishes have distinct settling patterns [e.g.

seaboard goby (Gobiosoma ginsburgi) (Duval and Able, 1998) and window-

pane flounder (Scophthalmus aquosus) (Neuman and Able, 2002)], such that

larvae develop and take up residence in estuaries or coastal habitats (Able

et al., 2006). SW-linked halibut (Paralichthys californicus), summer flounder

(P. dentatus), and turbot (Pleuronichthys guttulatus and P. ritteri) spawn

near the coast and larvae metamorphose and settle as juveniles near or in the

estuary and remain there through the early part of their life history (Moser,

1996; Gibson, 1997; Love, 1996; Sackett et al., 2007, 2008; Herzka et al.,

2009). Juvenile flatfish (e.g. Solea solea and Solea senegalensis) select areas

based largely on abiotic conditions such as structure, temperature, and

salinity (Vinagre et al., 2007, 2009). Although variable, many juvenile

flatfish are likely to experience only narrow salinity fluctuations at or near

full-strength SW (Herzka et al., 2009; Fairchild et al., 2008).

Other SW-linked fishes have pelagic larvae (e.g. gilthead sea bream,

Sparus aurata) which hatch in the ocean and are recruited into coastal

waters. Juveniles migrate further into estuaries, where they experience a

wide range of salinities, up to 60 ppt (Ben-Tuvia, 1979; Tandler et al., 1995).

Distribution of these fish is strongly influenced by prey availability

(Timmons, 1995) and recruited young of the year experience rapid growth

(Rountree and Able, 1992; Szedlmayer et al., 1992). Pinfish (Lagodon

rhomboides) (Sparadae) spawn in the ocean (Muncy, 1984) and larvae are

recruited into the estuary (Warlen and Burke, 1990). Juveniles subsequently

exploit benthic habitats for several months (King and Sheridan, 2008).

European anchovy (Engraulis encrasicolus) is a conspicuous example of a

SW-linked species that facultatively exploits estuarine habitat (Suzuki et al.,
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2008; Hibino et al., 2006). Some fish complete their life history in a saline

environment, while others use low-salinity reaches of the estuary as a rearing

habitat (Morais et al., 2010).For these fish, spawningoccurs in the lower estuary

and larvae develop and move into the upper reaches of the estuary before

migrating downstream after this period of growth (Chı́charo et al., 2001).

Similarly, sea bass (Lateolabrax japonicas) spawn offshore and the young

migrate inshore populating both estuaries and surf zones as juveniles (Fuji et al.,

2010). Conspecifics can therefore have very different osmotic experiences.

Many SW-linked fishes can dominate the upper reaches of the estuary

where salinity approaches FW, necessitating tolerance to low salinities in

these fish (Weisberg et al., 1996; Whitfield, 1998; Maes et al., 2005;

Hoeksema and Potter, 2006). Juveniles remain in estuarine environments

over wide temporal and spatial periods. Winter flounder (Pseudopleuro-

nectes americanus) remain in the estuary for 2 years before moving into the

ocean (Pereira et al., 1999). Ladyfish (Elops saurus) are found over a wide

range of salinities, although rarely in FW (McBride et al., 2001). Spotted

grunter (Pomadasys commersonnii) spawn in the ocean and developing

juveniles recruit into estuaries, where they remain for a period of 1–3 years

(Wallace and Van der Elst, 1975; Heemstra and Heemstra, 2004) and display

strong site fidelity (Childs et al., 2008).

2.5. Estuarine Fishes

Estuarine fishes reside in the zone of fluctuating salinity through all

periods of their life history, but individuals within a given cohort may

experience substantial variability in salinity. These fish often gravitate to

BW for spawning and are considered in detail in Marshall (2013, Chapter 8,

this volume). Estuarine species are exemplified by black sea bream

(Acanthopagrus butcheri), which can be found in salinities from 0 to 60 ppt

(Hoeksema et al., 2006; Hindell et al., 2008; Sakkabe and Lyle, 2010) and

generally complete their life cycle within the upper and middle part of an

estuary (Butcher and Ling, 1958; Hindell, 2007; Hindell et al., 2008). For

this species, moderate salinities are required as poor recruitment is

correlated with high FW delivery into the estuary (Sakabe, 2009). The

mummichog (Fundulus heteroclitus) may best exemplify estuarine species.

This fish completes its life history within salt marshes (Taylor et al., 1979)

and undergoes limited movements (Lotrich, 1975; Teo and Able, 2003).

These remarkable fish may undergo daily fluctuations in salinity, from near

FW to full-strength SW as the tide ebbs (Griffith, 1974). Estuarine fishes are

not considered further in this chapter but are discussed by Marshall (2013,

Chapter 8, this volume).
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3. MOVEMENT PATTERNS

3.1. Control of Migration

The choice of ‘‘when and where’’ to spawn can have profound effects on

the life history strategy assumed by the progeny. White perch spawn over a

protracted period (North and Houde, 2001) and a greater proportion of

resident (versus anadromous) fish occur in faster growing late-spawned

cohorts (Kerr and Secor, 2010). Amphidromous ayu (Plecoglossus altivelis;

Osmeriformes) move downstream in anticipation of spawning (Tsukamoto

et al., 1987; Iguchi et al., 1998), which may be advantageous for young in

that it reduces their seaward migratory distance. Similarly, Galaxias

maculatus adults move downstream to spawn at the head of tide (McDowall,

2008). For amphidromous fishes, this does not appear to be a widespread

pattern. Others, such as the Amur goby (Rhinogobius brunneus), show no

indication of such prespawn movement patterns.

The internal condition of the organism influences its behavior during

migration. Sea lamprey metamorphosis and subsequent survival during

the prefeeding (parasitic phase), downstream migration is dependent upon

the availability of sufficient lipid energy stores during these non-trophic

periods (Lowe et al., 1973; Beamish et al., 1979; Youson, 1997).

Similarly, the propensity for anguillid glass eels to migrate is dependent

upon energy stores (Bureau du Colombier et al., 2007, 2009; Bolliet and

Labonne, 2008). It has been hypothesized that the facultative diadromy

observed in anguillids is linked to an individual’s response to its own

metabolic status (Edeline, 2007). While downstream migration of juvenile

American shad may be more concerted in the fall (O’Leary and Kynard,

1986; Zydlewski and McCormick, 1997a,b), retrospective otolith analysis

reveals a more protracted migration that is influenced by size (Limburg

and Ross, 1995; O’Donnell and Letcher, 2008). Similar variability and

correlation with size have been reported for other clupeid species, e.g.

allis shad (Alosa alosa) and twaite shad (Alosa fallax), in terms of both

the timing of migration and extent of residence in the estuary (Taverny,

1991; Lochet et al., 2008).

Endogenous rhythms are ubiquitous and are the underpinning of activity

patterns and migrations in all animal clades (Dingle, 1996, 2006). For

salmonines, timing of the development of SW tolerance is species specific

and cued by photoperiod and modified by other environmental factors

(Boeuf, 1993; Hoar, 1988; McCormick, 1994). Diurnal cycles are linked to

redistributions of fish within estuaries (Rountree and Able, 1993; Gray et al.,

1998; Miller and Skilleter, 2006; Hagan and Able, 2008). Larval and juvenile

green sturgeon exhibit a diel pattern of migration that peaks at night
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(Kynard et al., 2005) and photoperiod has been suggested as the major

driver of preparatory adaptation in this fish (Allen et al., 2011).

Many estuarine fishes exhibit a demonstrable pattern of activity linked to

tidal stage, e.g. toadfish (Halobatrachus didactylus) (Campos et al., 2008),

and with demonstrated circatidal rhythms such as those seen with juvenile

plaice (Pleuronectes platessa) (Burrows, 2001) and the juvenile intertidal

blenny (Zoarces viviparous) (Cummings and Morgan, 2001). Vertical

migration of glass eels in response to tidal currents remains one of the

most conspicuous examples of circatidal patterns (McCleave and Wippel-

hauser, 1987; Wippelhauser and McCleave, 1988). In the absence of a tidal

zeitgeber, the pattern dampens (Bardonnet et al., 2003), even with

photoperiod information (Dou and Tsukamoto, 2003).

Behavioral patterns established by endogenous rhythms are sculpted by

other cues for migration. Eel movements occur preferentially under low-

light or high-turbidity conditions, e.g. European eel (Bardonnet et al., 2005).

Migration into the estuary is linked to spring tides and therefore moon

phase (Jellyman, 1979; McKinnon and Gooley, 1998; Tsukamoto et al.,

2003). Patterns of upper estuary use by flatfish juveniles (e.g. Plecoglossus

altivenils and Lateolabrax japonicas) may be facultative and linked to the

diurnal flood tides (Ohmi, 2002). Olfactory cues such as those resulting from

decaying organic material (e.g. decomposition of plants/animals) may serve

to attract coastal juvenile anguillids (Sorensen, 1986; Sola, 1995), indirectly

indicating lower salinity (Sola and Tongiorgi, 1996).

Temperature is considered a driving factor in the timing of spawning and

migrations (Livingston, 1976; Marshall and Elliott, 1998; Witting et al.,

1999). The relative roles of other factors (e.g. salinity, dissolved oxygen, FW

input) can be masked through covariance (Morin et al., 1992; Potter et al.,

1986; Valiela, 1995; Fraser, 1997). Temperature, however, may limit the use

of FW habitat and estuaries for many fishes (Attrill and Power, 2002, 2004).

White perch and striped bass spawning is cued by the initial rise in

temperature during spring (Rutherford and Houde, 1995; Secor and Houde,

1995). Temperature is thought to provide a threshold for the initiation of

upstream migration in anguillid eels, e.g. shortfinned eel (A. australis)

(Kearney et al., 2009) and European eel (Creutzberg, 1961; Tesch, 2003).

For American shad juveniles, temperature in FW may serve as a

migratory cue through its influence on hyperosmoregulatory ability.

Anadromous American shad are fully competent to enter into SW at larval

juvenile transition, months before autumnal migration. As temperatures

decline, these fish cease feeding and downstream migration is hastened

(Backman and Ross, 1990; Zydlewski and McCormick, 1997b). Below 101C

shad juveniles rapidly decline in osmoregulatory ability (Chittenden, 1972;

Zydlewski and McCormick, 1997b). Late SW entry at low temperatures also
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comes with a physiological cost because it may impact survival (Zydlewski

et al., 2003).

Downstream movements of young amphidromous fishes (e.g. gobiids

and eleotrids) appear to be cued by seasonal and short-term changes in

stream flow (Fitzsimons et al., 2002). Similarly, migration back into FW is

also associated with rain events (Delacroix and Champeau, 1992). Flow may

also clear the stream mouth, thus facilitating passage (Fitzsimons and

Ogorman, 1996). Postlarvae congregate near the shore and initiate diurnal

migrations, indicating a visual component of upstream searching (Miller,

1984; Fievet et al., 1999; Lim et al., 2002). Actively migrating amphidro-

mous gobies select FW rather than SW and preferentially select stream-

origin water over well water (Fitzsimons et al., 2002).

3.2. Passive and Active Movement in the Estuary

Migratory fishes can use estuary habitats for protracted periods, ranging

from weeks to years (Able et al., 2005). For structure-oriented species such

site fidelity can be strong (Able et al., 1995; Tupper and Boutilier, 1995), as

seen in juvenile winter flounder (Pseudopleuronectes americanus) in which

movements were limited to a 100 m zone for up to 3 weeks (Saucerman and

Deegan, 1991). Similar observations were made in juvenile plaice

(Pleuronectes platessa) over several weeks (Burrows et al., 2004). These fish

also exhibited strong homing if displaced up to 3.5 km offshore (Riley,

1973). Resource ranging (Dingle, 1996) and site fidelity were observed in

young of the year summer flounder (Paralichthys dentatus). These fish

exhibited site fidelity, but made daily movements of up to 1 km (Szedlmayer

and Able, 1993). Flounder move onto the mudflats with high tide to feed

and return to deeper water at low tide (Wirjoatmodjo and Pitcher, 1984;

Raffaelli et al., 1990).

The importance of shallow littoral zones for small fish is well established

in estuarine ecology (Boesch and Turner, 1984; Loneragan et al., 1986;

Manderson et al., 2004) because it affords some protection from predators

(Paterson and Whitfield, 2000; Ruiz et al., 1993) and provides abundant

feeding opportunities (Orth et al., 1984; Rozas and Odum, 1988). Move-

ments synchronous with twilight periods into estuarine intertidal mudflats

(Vinagre et al., 2007) may also reduce risk of predation (Cowley and

Whitfield, 2001; Steinmetz et al., 2003; Zydelis and Kontautas, 2008).

Passive forces can be largely attributed to the volitional retention within

or movement through the estuary by migrating fishes. Larval fish have

limited mobility due to both size and morphology. Initial movements are

therefore influenced by the selection of spawning sites (Boehlert and Mundy,

1988). Tidal currents can transport and retain inorganic material (Postma,
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1961) and passively drifting organisms alike (de Wolf, 1973; Jager and

Mulder, 1999). Such advective tidal transport occurs as larval fish sink

during low-current velocities and are lifted in the water column by

turbulence on an incoming tide. Thus, tidal currents are responsible for

egg and early larval movement inshore (Power, 1984; Able and Fahay, 1998;

Werner et al., 1999).

Rapid seaward migration may be critical for the larvae of some

amphidromous species so that SW entry is synchronous with the transition

from endogenous to exogenous feeding. Iguchi and Mizuno (1999) estimated

that more than half of the Japanese goby (Rhinogobius brunneus) may starve

during downstream migration in long river systems owing to a lack of

appropriately sized prey in streams (Tsukamoto, 1991). Goby larvae

passively drift downstream during the night (Iguchi and Mizuno, 1990,

1991; Moriyama et al., 1998) and actively remain in the water column by

alternating movement towards the surface and sinking during rest periods

(Kinzie, 1993; Balon and Bruton, 1994; Keith et al., 1999). These larvae

accomplish this migration at the diminutive size of 1–4 mm in length (Han

et al., 1998; Keith et al., 1999). For amphidromous fishes that re-enter FW

at a small size, inshore and estuarine movements can also be dependent

upon tidal currents, e.g. Awaous guamensis (Keith et al., 2000) and

L. concolor (Nishimoto and Kuamo’o, 1997). Larvae are transported mostly

by currents, as has been frequently observed for other fish (Borkin, 1991;

Hare and Cowen, 1996), but larvae may also actively swim (Balon and

Bruton, 1994; Cowen et al., 1993; Leis and Carson-Ewart, 1997; Stobutzki

and Bellwood, 1997; Fisher et al., 2000).

Many SW-linked fishes move into temperate estuaries during the

postflexion larval stage (Miskiewicz, 1986; Strydom et al., 2003) or during

the juvenile stage (Wasserman and Strydom, 2011). This period is marked

by physiological, behavioral, and morphological shifts that can occur

synchronously with transition to nursery habitat (Balon, 1984; Kaufman

et al., 1992; Able et al., 2006). Migration to these ‘‘critical zones’’ in the

estuary favors successful recruitment (Dovel, 1971). Some pelagic juvenile

species such as menhaden (Brevoortia tyrannus) rely on the strength of a tide

to enter the estuary (Joyeaux, 1999). Passive forces may be sufficient to

explain the invasion of the estuary by pufferfish (Takifugu rubripes and T.

xanthopterus). These fish are moved inshore to the upper estuary by residual

currents in the lower vertical stratum of the estuary (Yamaguchi and Kume,

2008).

Some larval fish exploit currents in order to move inland (Jenkins and

Black, 1994; Jenkins et al., 1999). Oliveira et al. (2006) demonstrated

through hydraulic modeling that passive individual recruitment to the

estuary is dependent on FW flow. Vertical movements, however, can
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effectively move and retain organisms even under high flow conditions. Such

a mechanism of selective tidal transport exploits the vertical velocity profile

that approaches zero at the bottom during a period of opposing flow. Thus,

a fish can control directional movement in areas of reversing flows while

minimizing the energetic cost of swimming (Fortier and Leggett, 1983;

Miller, 1988). The ability to maintain position in the estuary by selectively

populating vertical habitat is a commonality in larval fish retained in the

estuary (Creutzberg, 1961; Hobbs et al., 2006), developing as both

behavioral and sensory abilities increase (Forward et al., 1999; Tolimieri

et al., 2000). The degree to which these fish have active control of position is

logically correlated with an increase in swimming ability (Clark et al., 2005;

Leis et al., 2006). Many fish exhibit a clear pattern to estuarine entry linked

to size and development. Bay anchovy (Anchoa mitchilli) in the Chesapeake

Bay are spawned in the lower estuary (Zastrow et al., 1991; Rilling and

Houde, 1999; Schultz et al., 2003) and the juveniles are recruited into low-

salinity waters at the head of tide as they grow (Dovel, 1971; Kimura et al.,

2000). The prevalence of vertical patterns is also correlated with tidal

magnitude (Graham and Sampson, 1982).

Tidal transport is not limited to larval fish, and this mechanism of

movement into and through the estuary is shared by many catadromous

anguillid species (Jellyman, 1979; Sheldon and McCleave, 1985; Sugeha

et al., 2001; Dou and Tsukamoto, 2003; Tesch, 2003). Selective vertical

movement of glass eels drives upstream progress (McCleave and Kleckner,

1982), resulting in an accumulation of these juveniles at the head of tide

(Gascuel, 1986; McCleave and Wipplehauser, 1987; De Casamajor et al.,

1999). At this point, upstream progress necessitates the initiation of active

swimming (Creutzberg, 1961).

4. OSMOREGULATORY COMPETENCE

As euryhaline fishes move between SW and FW, an obvious requirement

is the maintenance of plasma osmotic concentration (Blaber, 1974; Mehl,

1974; Martin, 1990). Steady-state plasma ions are generally higher in SW-

acclimated fish than in FW (Holmes and Donaldson, 1969; Allen and Cech,

2007; He et al., 2009) but regulated within a relatively narrow range

(McDonald and Milligan, 1992; Evans et al., 2005). Even larval fishes tightly

regulate internal osmolality with respect to external salinities

(280–360 mOsm; Varsamos et al., 2005). In FW, fish use hyperosmoregu-

latory strategies to offset the osmotic influx of water and to counter passive

ion losses. On the other hand, hypoosmoregulatory strategies are used to
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offset ion influx and dehydration in more saline waters (Evans, 1999;

Varsamos et al., 2005). Fishes in SW must also offset the uptake of divalents

such as Mg2+, SO4
2�, and Ca2+, which can occur passively across the gills, or

through the ingestion of food and water.

The gills, digestive tract, and kidneys play important roles in osmoregula-

tion in both saline and FW environments. Gill ionocytes (also known as

mitochondrion-rich cells and chloride cells), first noted by Keys and Wilmer

(1932) in American eel, play a critical role in ion excretion, as definitively

demonstrated by Foskett and Scheffey (1982). The excretion of Na+ and Cl�

excretionby these SW ionocytes relies uponoubain-sensitive, basolateralNa+/

K+-ATPase (NKA) pumps, which maintain the low intracellular Na+

concentrations required to promote the excretion of Cl� and Na+ across the

gills (Karnaky et al., 1976, 1977; Silva et al., 1977). Ion extrusion also involves

the transport of Cl� andNa+ into the ionocyte via a basolateral Na+,K+,2Cl�

cotransporter (NKCC), resulting in sufficiently high intracellular Cl�

concentrations to generate the electrochemical gradient needed to promote

Cl� excretion via an apical cystic fibrosis transmembrane conductance

regulator (CFTR) channel normally found within the small apical pit of SW

ionocytes (reviewed by Marshall, 2002; Evans et al., 2005; Marshall and

Grosell, 2006; Edwards and Marshall, 2013, Chapter 1, this volume). The

resulting local accumulation of negative charge then promotes paracellular

Na+ excretion between adjacent ionocytes and accessory cells or other

ionocytes linked with relatively shallow tight junctions (Sardet et al., 1979).

FW fishes actively take up Na+ and Cl� via FW ionocytes on the gill filament

and lamellar epithelium (reviewed by Perry, 1997; Wilson and Laurent, 2002;

Marshall, 2002; Evans et al., 2005; Edwards and Marshall, 2013, Chapter 1,

this volume). The large bulbous, apical surface of the FW ionocyte is studded

with numerous microvilli, increasing the surface area for ion uptake. Like the

SW ionocytes, the basolateral surface of FW ionocytes is enriched with NKA

transporters, but it is apical H+-ATPase pumps and the basolateral NKA that

establish the inward electrochemical gradient that promotes Na+ influx via

apical Na+ channels. Chloride is taken up via apical Cl�/HCO3
� exchange and

a presumed basolateral Cl� channel (Perry, 1997;Marshall, 2002; Evans et al.,

2005 for reviews).

To counteract osmotic water losses across the gills, SW-acclimated fish

drink SW, relying on gill-mediated ion excretion to counter the resulting salt

load (Smith, 1932; Keys, 1933). In general, Na+ and Cl� are actively taken

up in the esophagus, which lowers the osmolality of the ingested SW prior to

its reaching the intestine (Hirano and Mayer-Gostan, 1976), where the

majority of water uptake takes place (Grosell, 2011). The excess Na+ and

Cl� is then removed from the blood via the gill SW ionocytes. Water uptake

is further driven by the alkalinization of the gut contents in the posterior

JOSEPH ZYDLEWSKI AND MICHAEL P. WILKIE268



intestine, resulting in the generation of CO3
2� and the formation of CaCO3

precipitates in the gut lumen, which further lowers the osmolality of the

intestinal fluids, promoting water uptake (Grosell, 2006, 2011; Wilson et al.,

2009). The gut also plays an important role, along with the kidneys, in the

excretion of divalents such as SO4
2�, Mg2+, and Ca2+. Glomerular filtration

rate (GFR) and urinary flow rate (UFR) are much lower in SW fishes. In

FW fishes, on the other hand, the kidneys reabsorb Na+ and Cl� and act as

a ‘‘bilge-pump’’ that excretes copious amounts of dilute urine (Beyenbach,

2004; Marshall and Grosell, 2006; Evans et al., 2005; Edwards and

Marshall, 2013, Chapter 1, this volume). Although it had been widely

accepted that fish do not drink in FW, it now appears that there is some

water ingestion, but at rates far below those observed in SW fishes (Marshall

and Grosell, 2006).

4.1. Patterns of Osmoregulatory Competence

The fundamental mechanisms of transitioning from FW to SW are

similar across all groups of euryhaline fishes. In general, there is a

replacement of FW ionocytes with SW ionocytes, usually accompanied by

an increase in gill NKA activity, increased drinking, and decreased urine

output (Folmar and Dickhoff, 1980; Hoar, 1976, 1988; McCormick, 2001;

Evans et al., 2005). While increasing NKA is generally observed during SW

acclimation, an increase in this NKA activity can also be observed in fish

transferred from SW to FW (Bystriansky and Schulte, 2011), underscoring

the shared reliance of osmoregulatory mechanisms on this transporter in

either environment. In addition to these homeostatic adjustments, factors

such as life stage, behavior, and body size are key factors affecting survival

following FW to SW transfer (Hoar, 1988; Folmar and Dickhoff, 1980).

While there appears to be great commonality in the mechanisms of

osmoregulation across clades of migratory fishes (Hoar, 1988; Evans, 1993;

Marshall and Grosell, 2006), there is great variation in the developmental

patterns of osmoregulatory competence for life in SW.

In assessing patterns of salinity tolerance, McCormick (1994) described

three general pathways by which SW tolerance might be developed: (1)

development at an early age; (2) gradual acclimation associated with

increasing size; and (3) environmentally cued development as a juvenile

‘‘preparatory adaptation’’. Such processes are well characterized for

salmonines, which represent only one group of migratory fishes. Develop-

ment is a major driver for salmon that enter SW soon after hatching [e.g. fall

Chinook (Oncorhynchus tshawytscha), chum (O. keta), and pink salmon (O.

gorbuscha)], but the underlying mechanisms are not yet clearly worked out.

On the other hand, the role of the preparatory adaptation of smolting is very
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well characterized and extensively described for Atlantic salmon (Salmo

salar), coho salmon (O. kisutch), and steelhead trout (O. mykiss). This

preparatory adaptation minimizes osmotic perturbations as these fish transit

the estuary (McCormick and Saunders, 1987; Hoar, 1988; McCormick,

2013, Chapter 5, this volume). In brook trout (Salvelinus fontinalis) there are

no apparent physiological changes and survival in SW depends upon

gradual acclimation and body size (McCormick and Naiman, 1984). While

these patterns are not mutually exclusive, this construct presents

testable hypotheses that can be systematically applied to explain the

patterns observed in other clades (as in Allen et al., 2011; see below).

4.1.1. Development at an EarlyAge

Osmoregulation begins with embryonic development (Alderdice, 1988),

but the focus of this section will be on the mechanisms seen posthatch. Prior

to the development of the gills, larval fishes have to counter diffusional ion

losses that mainly take place across the body surface using ionocytes located

in the integument (Tytler and Bell, 1989; Tytler et al., 1993; Rombough,

2007). The ionoregulatory capacity appears to be somewhat lower in these

early life stages compared to later in development, as internal osmolality can

vary widely in larval fishes, from 250 to 540 mOsm (Varsamos et al., 2005).

SW-linked larval fishes may survive in BW, and be tolerant to very dilute

salinities (Yin and Blaxter, 1987). Even as yolk-sac larvae, Atlantic herring

(Clupea harengus) maintain low blood osmolality with respect to a saline

environment (Holliday and Blaxter, 1960), as does the lumpsucker

(Cyclopterus lumpus) (Kjörsvik et al., 1984). Plaice (Pleuronectes platessa)

yolk-sac larvae display an impressive pattern of regulation from low

salinities to full-strength SW with minimal perturbation (Holliday, 1965;

Holliday and Jones, 1967).

There are many other examples of early ontogenic changes in capacity for

salinity (see excellent review by Varsamos et al., 2005). In many SW-linked

fishes there is an ontogenic shift in the capacity to osmoregulate in the early

postembryonic stages, e.g. in European sea bass (Morone labrax) and starry

flounder (Platichthys stellatus) (Hickman, 1959). The amphidromous goby

(Chaenogobius urotaenia) has the ability to enter higher salinity immediately

posthatch, but performs poorly in FW. Larvae moved into 50% SW survived

for more than 30 days, while those in FW lived less than a week (Katsura and

Hamada, 1986). A similar trend was observed in the goby (Awaous guamensis)

when larvae were held in either 34 ppt SW or FW (Ego, 1956).

Striped mullet (Mugil cephalus) display osmotic perturbations during

FW and SW exposure as young larvae, but osmoregulatory ability increases

quickly through development (Nordlie et al., 1982). For these fish, early

development of hypoosmoregulatory capacity may reflect an adaptive
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‘‘spread the risk’’ strategy. Remaining in the estuary during early

development may be just as likely an outcome as being recruited into full

salinity and these fish are prepared for either. Indeed, these fish are capable

of survival in full-strength SW very early in development, when they are still

quite small (just over 40 mm) (Nordlie et al., 1982). In many cases,

osmoregulatory competence in early life stages involves developmentally

dependent restructuring and/or modifications to osmoregulatory organs

including the gill, gastrointestinal tract, and kidneys (Varsamos et al., 2005;

Rombough, 2007). For instance, in gilthead sea bream (Sparus aurata)

osmoregulatory capacity is increased during development as ionocytes shift

from the integument to the gills (Bodinier et al., 2010).

4.1.2. Acclimation and Size

Many teleosts can be gradually acclimated to increased salinity and

either correct or establish new steady-state internal ion concentrations

(Holmes and Donaldson, 1969; Jacob and Taylor, 1983; Evans, 1984). The

ability to acclimate gradually to increasing ion concentrations, or in

response to abrupt transfer to SW, can be profoundly influenced by size. For

example, in tilapia (Oreochromis aureus and O. niloticus) the ontogeny of

salinity tolerance is positively correlated with body size although there is no

apparent developmental stage associated with this increase (Watanabe et al.,

1985). Similarly, increased salinity tolerance has been linked to size in

gilthead sea bream (S. aurata) (Bodinier et al., 2010) and European sea bass

(Varsamos et al., 2001). Such patterns have been postulated to reflect the

relatively reduced shift in diffusional surface with respect to increased

volume achieved during growth, thereby reducing the burden of osmor-

egulation in larger fish (Allen et al., 2009).

With the notable exception of green sturgeon (Allen et al., 2009, 2011), the

pattern of late SW entry of most sturgeon juveniles is consistent with the

hypothesis that these fish do not have a discrete preparatory adaptation for

SW entry, but slowly acquire the ability through an increase in size. The

general behavioral paradigm has been that juvenile sturgeon migrate seaward

over a period of years (Vladykov andGreeley, 1963), remaining in the estuary,

and perhaps exploiting the lower metabolic costs associated with a lesser

osmotic differential. Size-mediated increase in osmoregulatory ability has

been documented in several sturgeon species, e.g. Gulf sturgeon (A.

oxyrinchus) (Altinok et al., 1998), white sturgeon (A. transmontanus) (Amiri

et al., 2009; McEnroe and Cech, 1985) and shortnose sturgeon (Ziegeweid

et al., 2008). The behavior ofAtlantic sturgeon indicates an avoidance of high-

salinity environments at small sizes (Brundage andMeadows, 1982;Dovel and

Berggren, 1983; Bain, 1997). There is also some evidence of staging in the

6. FRESHWATER TO SEAWATER TRANSITIONS IN MIGRATORY FISHES 271



estuary by European sturgeon (A. sturio) juveniles. This may indicate a period

of acclimation prior to SW entry (Rochard et al., 2001).

Fish may actively occupy regions of moderate salinity in order to

acclimate. Contact with increased salinities can elicit greater salinity tolerance

in several sturgeon species, e.g. Gulf sturgeon (Altinok et al., 1998), white

sturgeon (McEnroe and Cech, 1985), and Adriatic sturgeon (McKenzie et al.,

2001). Anguillid glass eels may stratify in SW low in the estuary, perhaps to

graduallymake the transition into FW. Further up in the estuary these fish are

more evenly distributed through the water column in FW (Adam et al., 2008).

Similarly, the return to FW in amphidromous gobies may be linked to body

size, based on the consistent sizes of species upon return (Keith et al., 2002).

These fish may persist in the estuary for several weeks (Font and Tate, 1994),

although it is unclear whether this is linked to the ability to osmoregulate or

whether it reflects a size-dependent metamorphosis, or both.

4.1.3. Developmental Stage

Direct SW transfer is often used to characterize the ontogeny of salinity

tolerance (Varsamos et al., 2001; Watanabe et al., 1985; Zydlewski and

McCormick, 1997a; Allen et al., 2009, 2011). In many species SW tolerance is,

after all, correlated with migration and seasonal movements (Varsamos et al.,

2005). For some species, this connection is relatively clear. The parr–smolt

transformation in salmonines is a synchronized shift in behavior,morphology,

and physiology linked to seaward migration resulting in a rapid transition

through the estuary (Schreck et al., 2006; McCormick, 2013, Chapter 5, this

volume) that limits vulnerability to predators (Kennedy et al., 2007). Yet in

other species, the ontogeny of salinity tolerance andof preparatory adaptation

is the backdrop for a wide array of life history contingencies. For instance, in

anguillids, glass eelmetamorphosis and acclimation toFWare associatedwith

irreversible changes to the gut structure (Ciccotti et al., 1993; Rodriguez et al.,

2005). Body size and life stage are important determinants of osmoregulatory

competency in saltwater. As illustrated below, however, in most cases these

variables are part of a suite of processes associated with other preparatory

adaptations that determine osmotic scope through a species’s life history.

5. PREPARATORY ADAPTATION AND MECHANISTIC TRENDS

5.1. Anadromous Fishes

5.1.1. Lamprey

All of the anadromous lampreys have an SW parasitic phase, in which

they attach themselves to potential prey/hosts, which include not only
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large-bodied teleost fishes (Farmer, 1980; Renaud et al., 2009) but also

elasmobranchs (Jensen and Schwartz, 1994; Wilkie et al., 2004; Gallant

et al., 2006) and even cetaceans (Nichols and Tscherter, 2011). Before this

parasitic phase, anadromous lampreys spend the first several years of their

lives burrowed in the substrate of FW streams as functionally blind

suspension feeding larvae, known as ammocoetes (Youson, 1980; Rovainen,

1996). Upon metamorphosis these relatively sedentary ammocoetes undergo

marked structural and physiological changes that include a reorganization

of the feeding apparatus in which the oral hood of the ammocoete is

replaced by an oral disc and rasping tongue that is used to penetrate the hide

and/or tear pieces of flesh from their hosts/prey in the parasitic stage

(Youson, 1980, 2003; Renaud et al., 2009). The gills also switch from a

unidirectional flow through gill to a tidally ventilated gill in which water is

actively pumped in and out of gill pouches in order to continuously use the

mouth for attachment to its parasitic host (Rovainen, 1996; Wilson and

Laurent, 2002). Metamorphosis is a size-dependent process, reflecting the

large stores of lipid needed to sustain the animal during this non-trophic life

phase (Lowe et al., 1973; O’Boyle and Beamish, 1977; Holmes et al., 1994;

Youson, 1997).

Development of SW tolerance is tightly linked to metamorphosis

(Beamish, 1980a,b; Morris, 1980; Richards and Beamish, 1981) and

upregulation of osmoregulatory capacity (Reis-Santos et al., 2008). The

ammocoetes are exclusively FW, and incapable of surviving in even dilute SW

for more than a few days (10–15 ppt ; Beamish et al., 1978; Reis-Santos et al.,

2008). As in other fishes, the lamprey gill epithelium is comprised of pavement

cells and lower numbers of mucus cells (Bartels and Potter, 2004; Evans et al.,

2005). Differences in ionocyte structure differentiate lamprey gills from those

of other fishes. The ammocoete gill has two types of ionocytes: ammocoete

ionocytes (referred to as ammocoete MR cells in Bartels and Potter, 2004) and

a population of intercalated ionocytes (Bartels and Potter, 2004), which are

solitary and found between adjacent pavement cells in this life stage (Reis-

Santos et al., 2008). The ammocoete ionocyte is distinct from the typical

teleost ionocyte and the intercalated ionocyte in that it lacks an extensive

tubular network, and has only minimal apical exposure and microvilli.

During metamorphosis, the ammocoete ionocytes lying between lamellae

of the gills are replaced by SW ionocytes (Peek and Youson, 1979), which

are subsequently lost during the upstream spawning migration (Bartels and

Potter, 2004). The intercalated ionocytes are retained (or reappear) only in

FW, implying a role in ion uptake. The emergence of SW ionocytes at

metamorphosis is accompanied by increased activity and abundance of gill

NKA (Reis-Santos et al., 2008) (Fig. 6.3A). Like teleost SW ionocytes,

lamprey SW ionocytes have an extensive tubular network, but they lack the
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immunofluorescence was restricted to ionocytes in the interlamellar spaces in SW-acclimated

(metamorphosing) animals (lower panel). Differential interference contrast images of merged
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apical crypt that is characteristic of analogous teleost SW ionocytes (Bartels

et al., 1998). Characteristic features of the SW ionocyte are their plate-like

appearance and propensity to be distributed in rows at the base of the

filament (Fig. 6.3B,C). These SW ionocytes extend into the interlamellar

region, probably with leaky paracellular junctions between adjacent cells

(Bartels and Potter, 2004). These changes in gill ultrastructure are

remarkably reminiscent of those that characterize smoltification in euryha-

line salmonid fishes, which also normally includes an upregulation of NKA

capacity and reliance on SW ionocytes (see McCormick, 2001; Evans et al.,

2005 for excellent reviews). Like smolting salmonids, postmetamorphic

lampreys take on a silvery sheen owing to the deposition of guanine in the

epithelium (Youson, 1980). Despite the subtle but significant differences in

gill ultrastructure, the mechanism of Na+ and Cl� extrusion in lamprey also

appears similar to that of SW teleosts. Evidence for the NKCC is limited in

lampreys, but using the T4 antibody to this protein (which cannot

distinguish between NKCC1 and NKCC2) this cotransporter has been

identified in sea lamprey ionocytes (S. Edwards, S. Blair and M. P. Wilkie,

unpublished observations). While a CFTR-like protein has not yet been

described in lampreys, its presence also seems likely.

Like other SW fishes, lampreys drink while in SW (Pickering and Morris,

1970; Rankin et al., 2001), with water absorption probably taking place

across the anterior intestine down osmotic gradients generated by Na+ and

Cl� uptake by enterocytes (Pickering and Morris, 1973). The divalent ions

(Mg2+ and SO4
2�) are not taken up by the intestine (Pickering and Morris,

1973) and are instead excreted in the very low amounts of urine and via

defecation (Pickering and Morris, 1973; Rankin et al., 2001).

The role of lamprey kidneys in SW has been described in upstream

migrant river lamprey (Lampetra fluviatilis) reacclimated to 50% SW.

Pickering and Morris (1973) noted that kidney UFRs were extremely low

after exposure to these hyperosmotic conditions. Further studies by Logan

et al. (1980) demonstrated that it was mainly marked reductions in GFR

(through a reduction in the number of renal corpuscles) that resulted in the

90% reduction in UFR observed. As in many SW teleosts, lamprey urine is

either hypoosmotic or isosmotic to SW, and mainly concentrated with Mg2+

and SO4
2�, and Cl� (Logan et al., 1980).

images of NKA, H+-ATPase protein, and DAPI (nuclear marker) to illustrate colocalization of

the two transport proteins. (C) Electron micrograph illustrating that the SW ionocytes of

lamprey (pouched lamprey, Geotria australis shown) are arranged in columns or rows,

containing extensive tubular invaginations, but unlike teleost ionocytes, lack an apical crypt.

Scale bar: 3 mm. Data and images in panel A and B from Reis-Santos et al. (2008); electron

micrograph in panel C adapted from Bartels and Potter (2004) with permission.
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The contribution to lamprey ion and osmoregulation made by the

ingestion of isosmotic fluids from their teleost hosts has yet to be

investigated. Such physiological parasitism could explain why NKA

activities tend to decrease with age and with body size in SW-acclimated

sea lamprey (Beamish, 1980b). Fossil evidence suggests an SW origin for

lampreys (Shu et al., 1999; Gess et al., 2006), implying that ancestral

lampreys were likely to be anadromous (Gill et al., 2003). However, the

conspicuous presence of the FW population of P. marinus in the Laurentian

Great Lakes indicates that anadromy may be facultative in this species, or

that rapid adaptation is possible (Lawrie, 1970; Eshenroder, 2009). Whether

or not the several other FW populations of parasitic lampreys, including

members of the Ichthymzyon, Entosphenus, and Lampetra genera (Potter and

Gill, 2003), have retained some of the features associated with anadromy

remains an open but intriguing question. Comparative work considering

endocrine control of ionocyte structure and function in relation to SW

tolerance in postmetamorphic juveniles may inform the evolutionary

radiation of lamprey species.

Little is known about the hormonal factors involved in the preparative

changes involved in the FW to SW transition in lampreys, but

metamorphosis is well described and depends upon gradual increases in

the thyroid hormones thyroxine (T4) and triiodothyronine (T3) in the larval

phase. These increases are followed by a precipitous drop in both hormones

that is thought to trigger metamorphosis (Youson, 1994, 2003; Youson and

Manzon, 2012). It is notable that these ‘‘low’’ levels are near the peak

concentrations known to initiate metamorphosis in amphibians (Youson,

2003), and could therefore be at physiologically relevant levels that are

sufficient to play a role in the development of SW tolerance. In fact, thyroid

hormones play an important role in preparatory adaptation of salmonines

to SW by initiating the upregulation of corticosteroid receptors, which is

critical for ensuring that the cortisol-induced upregulation of SW ionocytes

takes place in these fishes (Evans et al., 2005). The recent finding that 11-

deoxycortisol is the functional mineralocorticoid in lampreys (Close et al.,

2010) could represent a turning point in our understanding of preparatory

adaptation in these basal vertebrates. Indeed, 11-deoxycortisol administra-

tion to lampreys results in a marked increase in gill NKA activity, a

prerequisite for downstream migration and SW acclimation (Close et al.,

2010).

5.1.2. Sturgeon

Salinity tolerance is related to ontogeny in the anadromous sturgeons,

with body size being directly proportional to the ability of the fish to

hypoosmoregulate in SW environments (Altinok, 1998; Allen and Cech,
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2007; Allen et al., 2009, 2011). Amiri et al. (2009) noted that larger juvenile

white sturgeon experienced lower mortality and a lower onset of osmotic

disturbances when transferred to SW. Similar findings were reported by

Altinok et al. (1998) for Gulf sturgeon (A. oxyrinchus) using fish of identical

age (13 month posthatch) but grouped by size (110–170, 230–270, and 460–

700 g). Smaller fish suffered greater osmotic stress (increases in plasma

osmolality, Na+, and K+) and mortality following direct transfer from FW

to SW (25 ppt). Following 96 h exposure to SW, however, plasma ions

returned towards FW values in the larger fish, but Na+ remained elevated in

the smaller fish. Many sturgeon species require prior exposure to BW to

make the transition from FW to SW (McKenzie et al., 1999). White and

green sturgeons readily tolerate acute transfer from BW to the full-strength

SW, but are less tolerant of acute transfer to FW (Potts and Rudy, 1972).

Blood ion concentrations and patterns of Na+ uptake are similar to those of

teleosts. Transfer to SW also leads to decreased water permeability, with

reduced urinary flow being mainly for the elimination of divalents such as

Mg2+ and SO4
2� (Potts and Rudy, 1972).

Size alone is not sufficient to explain patterns of osmotic competence in

green sturgeon. There is a clear link between an ability to control plasma

osmolality and age. Allen and Cech (2007) acclimated three different life

stages of green sturgeon (100, 170, and 533 days posthatch age) to FW

(o3 ppt), BW (10 ppt), and SW (33 ppt). There was significant mortality

(23%), lower growth, and osmotic perturbations in the youngest group, but

older fish experienced no change to osmolality or Na+ concentration, and

only minor changes in plasma Cl�. Thus, the green sturgeon has the ability

to completely acclimate to SW after 1.5 years, and life-stage dependent

preparatory adaptation for SW residence is probably essential. Indeed, there

was no relationship between body mass and plasma osmolality when green

sturgeons were acclimated to SW over 7 weeks (Allen et al., 2009). Green

sturgeon survived short-term transfer to SW after a gradual acclimation in

BW at 4.5 months, but by 7 months they were capable of withstanding direct

transfer with no mortality, and minimal osmotic perturbations (Fig. 6.4A)

(Allen et al., 2011).

The development of increased osmoregulatory ability coincides with a

peak in cortisol that was followed by peaks in thyroid hormones and the

upregulation of gill and pyloric ceca NKA activity and abundance

(Fig. 6.4A) (Allen et al., 2009). Cortisol, with growth hormone (GH),

drives the proliferation of gill SW ionocytes in euryhaline teleosts. Thyroid

hormone is thought to have permissive effects that include the upregulation

of corticosteroid receptors in the gill (Takei and McCormick, 2013, Chapter

3, this volume). These changes occur at the time when decreased swimming

performance and other behavioral shifts associated with downstream
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migration occur (Kynard et al., 2005). This is the first evidence of a

preparatory developmental stage in sturgeon and may reflect a preparatory

adaptation of this species to enter SW at a relatively young age (Brown,

2007). Such preparatory adaptation may be triggered by external factors

such as photoperiod (Allen et al., 2011), but whether this or other factors are

involved requires further investigation. It remains to be determined whether

similar preparatory strategies for SW acclimation are used by other

migratory sturgeon, but this certainly represents an exciting and important

direction of future study.

There has been very limited work on the underlying molecular

mechanisms of ionocyte function in the sturgeon, but the general structure
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Fig. 6.4. Preparatory adaptation in the anadromous green sturgeon. Seawater (SW) tolerance in

green sturgeon is linked to ontogeny (A), with full SW tolerance developing in less than 5

months (red line). Tolerance is linked to a steady increases in plasma cortisol (orange line), and

increased gill (dashed line) and pyloric ceca (dotted line) Na+/K+-ATPase (NKA) activity.

Marked decreases in ionocyte abundance on the lamellae (black) are coincident with increases in

filamental ionocyte abundance (blue). dph: days posthatch. (B) Gill ionocytes rich in NKA

(green) on the lamellae (L) are more numerous in freshwater (FW) than brackish water (BW)

and SW. The intensity of the immunostaining on the filament located ionocytes (F), particularly

at the lamellar base (BL), was also greater in SW. Scale bar: 10 mm. Drawing based on Allen

et al. (2011); micrographs were obtained, with permission, from Allen et al. (2009); micrographs

obtained with permission from Allen et al. (2009).
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and function of sturgeon ionocytes are similar to those of teleosts. As in

teleosts, sturgeon switch from an FW ionocyte to an SW ionocyte as they

transition from FW to SW (Fig. 6.4B) (Altinok et al., 1998; McKenzie et al.,

1999; Martinez-Alvarez, 2005; Allen et al., 2009, 2011; Sardella and Kültz,

2009; Zhao et al., 2010). The most detailed microscopic examination, using

transmission electron microscopy, suggests that the SW ionocyte of at least

one species, the Adriatic sturgeon (A. naccarii), has an apical crypt

(Martinez-Alvarez et al., 2005), implying the presence of an apical Cl�

channel. An accompanying NKCC has been localized to the ionocyte in

green sturgeon, which is upregulated during SW acclimation (Sardella and

Kültz, 2009). Similarly, immunohistochemical localization indicates that the

basolateral membrane of SW ionocytes is enriched with NKA (McKenzie

et al., 1999; Allen et al., 2009; Sardella and Kültz, 2009; Zhao et al., 2010).

Sardella and Kültz (2009) also noted a downregulation of the V-type H+-

ATPase with SW acclimation in green sturgeon, consistent with a decreased

role for H+-ATPase coupling to drive Na+ uptake in saltwater environ-

ments.

There is some direct evidence that sturgeon drink during SW acclima-

tion, as demonstrated by exposing FW-acclimated Siberian sturgeon (A.

baerri) to elevated salinity (Taylor and Grosell, 2006). In the green sturgeon,

the concentrations of Na+ and Cl� are markedly lower in the stomach

compared to ambient SW, suggesting that the water is desalinated in the

esophagus en route to the stomach (Allen et al., 2009). The ion

concentrations decline further in the anterior–mid intestine, and in the

rectum, which probably generates more favorable lumen–blood osmotic

gradients in this region (Allen et al., 2009). As in SW teleosts there is

circumstantial evidence for high rates of luminal Cl�/HCO3
� exchange in the

intestine, based on lower Cl� concentrations, more alkaline pH, and the

presence of solid mucus tubes associated with precipitates comprised mainly

of Ca2+, CO3
2�, and HCO3

� (Allen et al., 2009). Thus, like its teleostean

counterparts, it appears that the sturgeon maximizes water uptake through a

combination of ion uptake in the esophagus and intestine, and Cl�/HCO3
�-

mediated base extrusion in the intestine to cause precipitation of solutes

such as Ca2+ in the form of CaCO3 (Grosell, 2011). Although increased

NKA, NKCC, and aquaporin in the gut are likely to be involved, this has

yet to be examined in sturgeons.

5.1.3. Alosine Fishes

Several anadromous clupeid species spawned in FW develop SW

tolerance at the larval juvenile transition, e.g. allis shad (Leguen et al.,

2007; Bardonnet and Jatteau, 2008) and American shad (Zydlewski and

McCormick, 1997a). Development of larval American shad can occur at
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salinities greater than isosmotic (Limburg and Ross, 1995) but development

of the gills at the larval–juvenile transition is necessary for survival in full

SW (Zydlewski and McCormick, 1997a). This ontogeny is likely to afford

some success of eggs and larvae displaced to the estuary before migration

occurs. In temperate rivers, migration can be protracted into the fall; thus a

wide window of SW entry is allowed. Size does affect migration. Larger

juveniles are recruited into migration earlier in the season (Limburg, 1996;

O’Donnell and Letcher, 2008) but there appears to be no increase in SW

tolerance at the time of migration (Zydlewski and McCormick, 1997a,b). In

allis shad, however, additional development of SW tolerance has been linked

to size of the juvenile (Leguen et al., 2007), which corresponds with the

timing of SW entry (Lochet et al., 2009).

In spite of being competent to enter SW early in development, migratory

juvenile American shad in FW have markedly higher gill NKA activities

than their non-migrant counterparts (Zydlewki and McCormick, 1997b).

Remarkably, this increase in NKA is linked to marked reductions in

hyperosmoregulatory ability in FW, as indicated by declines in plasma Cl�.

When held under FW conditions in the laboratory past the period of

migration, dramatic 70% reductions in plasma Cl� and increased mortality

occur. This decline is delayed, but not prevented, in juvenile shadheld constant

at 241C (Zydlewski and McCormick, 2001). Thus, declining hyperosmor-

egulating capacity probably represents a developmental shift, a ‘‘preparatory

adaptation’’, associated with the FW to SW migratory period, although its

adaptive significance is perplexing.As this reduction in ability to osmoregulate

in FW is hastened by declining temperature, this development probably

defines a window for successful ocean migration in temperate American shad

populations (Zydlewski et al., 2003) (Fig. 6.5). The increased gill NKA in

migrant American shad in FW is likely to be related to upregulation of ion

uptake mechanisms. Increased NKA corresponds to a significant increase in

ionocyte abundance in the gills, particularly on the lamellae (Zydlewski and

McCormick, 2001; Zydlewski et al., 2003) (Fig. 6.5). In FW, these cells have a

large surface and appear similar inmorphology to FW ionocytes implicated in

ion uptake in teleosts. As ionocytes on the lamellae proliferate, they begin to

cover an increasing proportion of the respiratory surface (Zydlewski and

McCormick, 2001). The proliferation and enlargement of ionocytes during

seaward migration may present a considerable energetic challenge to late

migrant shad or may directly interfere with respiration and other gill

functions. In both American shad and alewife (A. pseudoharengus), acclima-

tion to SW is associated with a marked increase in gill NKA activity, loss of

ionocytes on the gill lamellae, and increased size of filamental ionocytes

(Fig. 6.5) (Zydlewski et al., 2001; Christensen et al., 2012). Detailed

immunohistochemical examination of the alewife gill has demonstrated that
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the FW and SW ionocytes are indistinct from those of other teleosts

(Christensen et al., 2012). SW ionocytes have basolaterally located NKA and

NKCC1, and an apical CFTR channel embedded in the apical crypt of the

cells. The CFTR appears to be colocalized with the Na+/H+ exchange protein

3 (NHE3), which is likely to be important for acid–base regulation in SW

(Evans et al., 2005). SW ionocytes are arranged in diads or triads, which

probably facilitates paracellularNa+ extrusion through the formation of leaky
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Fig. 6.5. Preparatory adaptation in American shad. (A) Seawater (SW) tolerance develops at the

larval–juvenile transition in American shad, accompanied by parallel increases in gill Na+/K+-

ATPase (NKA) and filamental and lamellar ionocytes as the gills are formed. FW=freshwater. (B)

As shown by light (scale bar: 10 mm) and scanning electron microscopy, freshwater ionocytes are

numerous on both the gill lamellae and filament with large apical surfaces (as indicated by *).

During SW acclimation, total ionocyte numbers decrease and cells are restricted to the filament.

Apical crypts characteristic of SW ionocytes are formed (arrow). Data modified from Zydlewski

and McCormick (2001) and Zydlewski et al. (2003). Light micrographs reproduced with

permission from Zydlewski and McCormick (2001).
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tight junctions (Christensen et al., 2012; Edwards andMarshall, 2013,Chapter

1, this volume).

The FW to SW transition in alewife leads to increased gill NKA activity

and abundance on the basolateral membrane. NKCC abundance also

increases (Christensen et al., 2012). Based on similar increases in gill NKA

activity and changes in SW ionocyte distribution following SW acclimation

(Zydlewski and McCormick, 1997a, 2001), the fundamental mechanisms can

be presumed to be the same in American shad.

The decline in osmoregulatory competence seen in American shad with

prolonged residence in FW suggests that it is an obligate anadromous

species (Zydlewski et al., 2001). However, alewives appear to be facultative

in the expression of anadromy, as demonstrated by their ability to regulate

internal Na+ (Stanley and Colby, 1961) and Cl� (Christensen et al., 2012)

during prolonged or even permanent residence in FW (Scott and Crossman,

1973). American shad residence in FW is apparently curtailed by the

temporal loss of hyperosmoregulatory ability in FW (Zydlewski and

McCormick, 1997b, 2001; Zydlewski et al., 2003) and these fish are rarely

successful if landlocked (von Geldern, 1965; Lambert et al., 1980). Like

American shad, similar reductions in ionoregulatory competence have also

been reported in alewives exposed to cold temperatures following prolonged

periods in FW, which may have contributed to the sudden die-offs of

alewives that frequently occurred in the Great Lakes during the 1960s and

1970s (Stanley and Colby, 1971). There is a population of landlocked

American shad in California (von Geldern, 1965; Lambert et al., 1980), not

to mention several landlocked populations of shad, including the allis shad

(A. alosa) and twaite shad (A. fallax), in Europe (Bianco, 2002; Bagliniere

et al., 2003; Jolly et al., 2012). Direct comparisons between the anadromous

and landlocked Alosines could help to tease out the relative importance of

physiological preparation in these fishes.

5.1.4. Temperate Basses

The approximately 50 species of temperate basses inhabit FW, estuaries,

and marine environments. Some, including the striped bass (Morone

saxitilis) and white perch (Morone americana), are anadromous, spawning

in FW and typically migrating towards the sea as juveniles (Scott and Scott,

1988). However, schools of juveniles often remain in estuaries, with

occasional forays into FW that may last for several months or longer

(Scott and Scott, 1988). The period of preparatory adaptation for SW

appears to be minimal in the striped bass following hatching. While

tolerance to increased salinity is limited during the yolk-sac and larval

stages, juvenile striped bass are able to tolerate up to 10–15 ppt salinity only

a few months after hatching (Tagatz, 1961; Otwell and Merriner, 1975; Kane
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et al., 1990; Grizzle and Mauldin, 1994; Winger and Lasier, 1994; Secor

et al., 2000; Cook et al., 2010). Survival at higher salinities is positively

correlated with warmer water temperatures in juvenile white perch and

striped bass, perhaps due to limitations in ATP supply at lower

temperatures. Reduced power for NKA pumps may therefore reduce gill-

mediated Na+ and Cl� extrusion (Hurst and Conover, 2002; Hanks and

Secor, 2011). This may explain why these fishes tend to overwinter in lower

salinity regions of the estuary, when the metabolic demands of osmoregula-

tion would be less than at higher salinities (Hurst and Conover, 2002).

Indeed, marked reductions in energy stores have been reported in young-of-

the-year white perch following acclimation to 16 ppt salinity compared to

more dilute waters (Hanks and Secor, 2011).

Studies on striped bass, the most studied of the temperate basses, indicate

that transfer from FW to SW is associated with transient increases in plasma

Na+ and osmolality that generally recover to pretransfer levels within 24 h

(Madsen et al., 1994; Tipsmark et al., 2004). In both SW and FW, NKA and

CFTR appears to be localized to large cells, which are presumably ionocytes,

found at the base of the lamellae and in the interlamellar spaces (Madsen et al.,

2007). Ionocytes appear early in the ontogeny of the striped bass, when they are

mainly restricted to the gill filaments in larvae, followedbya shift to the lamellae

in the juvenile stages (43 days posthatch) (Hirai et al., 2002). As suggested

earlier, such findings imply that there may be two populations of ionocytes, a

filamental population involved in osmoregulation at higher salinities and an

FW population needed for hypoosmoregulation in more dilute waters. King

and Hossler (1991) proposed that the rapid acclimation of FW-acclimated

striped bass to SW was related to the restructuring of the ionocytes

characterized by extensions of the apical membranes of ionocytes, which were

associated with increased Cl� efflux. These ionocytes were replaced within 7

days by cells displaying the distinct apical crypts characteristic of SW ionocytes,

but ionocytes similar to those seen inFWwere still retained.These early findings

therefore suggest that the striped bass retains some of the physiological

machinery required for osmoregulation in both SW and FW.

Unlike many other anadromous migrating fishes, SW acclimation is

associated with only minor changes in gill ionocyte number or distribution

(King and Hossler, 1991; Madsen et al., 1994), although the surface area of

individual cells increases slightly (Madsen et al., 1994, 2007). Neither NKA

activity nor protein abundance (a1 subunit) changes greatly following FW

to SW (Madsen et al., 1994, 2007; Tipsmark et al., 2004) or SW to FW

transfer (Tipsmark et al., 2004). Nor does CFTR messenger RNA (mRNA)

expression or protein abundance appreciably change in response to greater

salinity (Madsen et al., 2007). On the other hand, NKCC mRNA expression

and protein abundance markedly increase following FW to SW transfer,
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consistent with a switch from ion uptake in FW to ion extrusion in SW

(Tipsmark et al., 2004).

Like the estuarine killifish (Fundulus heteroclitus) (see Marshall, 2013,

Chapter 8, this volume), the striped bass appears to be in a ‘‘state of

readiness’’ to control osmotic balance in the event of sudden changes in

salinity (Madsen et al., 2007). Madsen et al. (2007) have speculated that the

striped bass uses an ‘‘ionocyte shift-reuse’’ strategy in which the CFTR is

translocated to the basolateral membrane from its typical apical location,

while the NKCC1 is internalized (or removed) from the basolateral

membrane. Such reorganization would rapidly convert the ionocyte from

a salt-secreting to salt-absorbing cell, in which Cl� uptake would

presumably take place via apical Cl�/HCO3
� exchange followed by

basolateral uptake via the CFTR, and Na+ uptake would take place via

epithelial Na+ channels coupled to H+-ATPase-mediated proton extrusion.

However, H+-ATPase activity is quite low in striped bass compared to other

FW fishes such as the brown trout (Salmo trutta), suggesting that higher

basal rates of NKA activity or abundance may be needed to help generate

the low intracellular Na+ concentrations needed to generate favorable

inwardly directed Na+ electrochemical gradients in FW (Tipsmark et al.,

2004). Indeed, there may also be a functional switch in NKA indicated by

differential mRNA expression of the NKA a1 subunit, shifting from the

‘‘FW’’ a1a to the ‘‘SW’’ a1b isoform, as described in rainbow trout

(Richards et al., 2002). While intriguing, evidence for the ionocyte shift-

reuse model is lacking. Approaches using in vitro, immunohistochemical,

and immunoblotting approaches may be productive ways to elucidate

intracellular signaling pathways that control ion uptake and extrusion in the

gills of striped bass transitioning between FW and SW. However, it would

also be advisable to combine such approaches with direct measurements of

unidirectional movements of Na+ and Cl� across the gills to better relate the

changes in ion uptake and diffusive loss to events occurring at the cellular,

subcellular, and molecular level of the gills.

While physiological adjustments to changes in salinity are rapid,

endocrine regulation is likely to play an important but slightly different

role in mediating the FW to SW acclimation in the striped bass. Consistent

with its role in SW acclimation in other species (Marshall, 2002), cortisol

increases following FW to SW transfer in striped bass (Madsen et al., 1994).

However, the importance of cortisol remains unresolved (Tipsmark et al.,

2007). Exogenous cortisol administration has no effect on the expression of

gill NKA or CFTR mRNA levels in vivo, and actually suppressed CFTR

expression in isolated gill tissue in vitro (Madsen et al., 2007). Kiilerich et al.

(2011) recently demonstrated that cortisol and 11-deoxycorticosterone

activated the mitogen-activated protein (MAP) kinase signaling cascade in
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striped bass. Thus, even subtle, transient increases in hormone levels could

activate or inactivate CFTR, NKCC1, and NKA (or other critical proteins)

via phosphorylation pathways. As in other fishes, ionocytes are not

regulated by corticosteroids alone. In combination with cortisol, epidermal

growth factor (EGF) may play a key role in striped bass osmoregulation by

regulating CFTR function via the MAP kinase pathway (Madsen et al.,

2007). However, the role of cortisol plus EGF in the acquisition of SW

tolerance remains unresolved as experiments with isolated gill cells have

demonstrated a downregulation of CFTR abundance, rather than the

expected increase following FW to SW transfer (Madsen et al., 2007).

Insulin-like growth factor-1 (IGF-I) may also be critical because IGF-I

receptor mRNA expression is upregulated in ionocytes following FW to SW

transfer (Tipsmark et al., 2007). Increased plasma IGF-I has been shown to

play an important role in smoltification in salmonines (Sakamoto et al.,

1995). However, exogenously administered IGF-I impairs the hypoosmor-

egulatory ability of striped bass, suggesting that its fundamental actions

differ from those reported in salmonines (Tipsmark et al., 2007). It is more

likely that IGF-I is involved in FW acclimation as it promotes prolactin

release in striped bass pituitaries (Fruchtman et al., 2000). Work on the

molecular signaling pathways controlling osmoregulation in striped bass, as

well as other species including estuarine killifish (Marshall, 2013), is still in

its early stages, but should fill in many gaps in our understanding of the

processes controlling salt excretion by marine fishes.

Based on the rapid corrections to osmotic balance in striped bass with SW

acclimation, changes in gut ion andwater transport capacity are likely to occur

in parallel to those taking place in the gill. Madsen et al. (1994) reported that

the water transport capacity of the mid-intestine doubled with a 35% increase

in intestinal NKA activity following FW to SW transfer (Madsen et al., 1994).

Increased drinking rate occurs in 1-month-old striped bass following transfer

from FW to BW (5 ppt) (Grizzle and Cummins, 1999). Like the gills, the

intestine and the kidneys are probably also in a state of ‘‘readiness’’ to allow

striped bass to rapidly adjust to changes in external salinity. However, most of

the work thus far has focused on physiological adjustments occurring in the

gills. Given the importance of the gut and kidneys in SW osmoregulation,

studies focusing upon the temporal plasticity of these organ systems in

response to changes in salinity are clearly warranted.

5.2. Catadromous Fishes

5.2.1. Anguillids

As described earlier, newly hatched eel larvae (leptocephali) are

transported on ocean currents from ocean spawning grounds to intertidal

6. FRESHWATER TO SEAWATER TRANSITIONS IN MIGRATORY FISHES 285



areas where they transform into glass eels. These juveniles accumulate at the

head of tide before initiating active swimming upstream. This delay in

migration may be associated with morphological and physiological

preparation for the riverine environment as they transition to pigmented

‘‘yellow eels’’ (Jellyman, 1977; McCleave and Wippelhauser, 1987; Pease

et al., 2003). There is, however, no obvious shift in osmoregulatory capacity

at this stage. Glass eels make the transition from SW to FW without

notable changes in water content (Wilson et al., 2007) or plasma osmolality

(Seo et al., 2009). Glass eels captured in the lower tidal area are already

competent to osmoregulate in FW (Wilson et al., 2004).

Recent findings using telemetry and Sr:Ca ratios in otoliths suggest that

northern temperate eels are facultatively catadromous (Tsukamoto et al., 2001;

Daverat et al., 2006; Thibeault et al., 2007; Arai et al., 2009), with some animals

persisting in the estuary and making sorties into FW (Fig. 6.2) (Jessop et al.,

2008; see also Shrimpton, 2013, Chapter 7, this volume). Yellow eels must

therefore be robust to the changes in salinity that occur through the tidal cycle

and the gills play a critical role. Gill ionocytes are distributed on both the

lamellar and filamental epithelium of the yellow eel (Thomson and Sargent,

1977; Sasai et al., 1998). In Japanese eel, two types of ionocytes, acidophilic type

Aandweakly acidophilic typeB ionocytes, are present (Shirai andUtida, 1970).

The type B ionocytes (referred to as CCs by the authors) were differentiated

from type A based on their smaller size, smaller mitochondria with less distinct

cristae, and a less elaborate tubular network (Shirai and Utida, 1970; Utida

et al., 1971).More recent work revealed that these basolateral invaginations are

rich in NKA (Marshall, 2002; Evans et al., 2005).

Abrupt transfer of yellow eels from FW to SW is accompanied by an

initial increase in ionocyte abundance and size (Keys and Wilmer, 1932;

Olivereau, 1970; Utida et al., 1971; Thomson and Sargent, 1977), and

parallel increases in gill NKA activity (Kamiya and Utida, 1968; Utida

et al., 1971; Thomson and Sargent, 1977; Rankin, 2009) and abundance

(Cutler et al., 1995a,b). In Japanese eel it is the type A ionocytes that

increase in number and size, followed by the gradual elimination of the type

B ionocytes after 2 weeks in SW (Shirai and Utida, 1970).

While such plasticity is of inherent value when fish are faced the

uncertain salinity of the estuary, an increase in active Na+ and Cl� extrusion

capacity in full-strength SW probably results in greater energetic costs.

However, otolith Sr:Ca ratio data also indicate that growth is much less in

FW-dwelling yellow eels and those spending prolonged periods in BW or

SW (Jessop et al., 2008; Cairns et al., 2009; Lamson et al., 2009). Therefore it

remains unclear what the relationship is between energy expenditure and

osmoregulatory capacity in the yellow eel. It would be informative to

determine the energetic costs that transient excursions into SW from FW or
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BW have on yellow eels, compared to silver eels that are undergoing

physiological preparation for their seaward migration.

The transition from the yellow to silver stage (‘‘silvering’’) in anguillid

eels is perhaps the most obvious change associated with the initiation of

seaward migration and reproductive maturation (e.g. Utida et al., 1967;

Thomson and Sargent, 1977; Fontaine et al., 1995; Lignot et al., 2002;

Tesch, 2003; Acou et al., 2005; Kalujnaia et al., 2007; van Ginneken et al.,

2007b). Silvering also marks a period of physiological preparedness for the

eel’s extended, terminal stay in SW (see Tesch, 2003; Rankin, 2009 for recent

reviews). However, there appears to be no difference in the SW tolerance of

yellow and silver eels (Rankin, 2009).

Gill ionocyte abundance changes little during silvering (Thomson and

Sargent, 1977; Sasai et al., 1998): ionocytes on the lamellae of the gill are

lost, while ionocyte size and number on the gill filament increase (Fontaine

et al., 1995; Sasai et al., 1998). These shifts result in modest increases in

NKA activity in FW, which further increases after exposure to SW

(Thomson and Sargent, 1977; Sasai et al., 1998; Rankin, 2009).

As in the clupeids (see above), the loss of lamellar ionocytes implicates

these cells in ion uptake, while the filamental ionocytes are probably for salt

extrusion (Sasai et al., 1998; Sakamoto et al., 2001). Detailed ultrastructure

analysis also noted a more extensive tubular network and greater numbers

of mitochondria in filamental ionocytes (Doyle and Epstein, 1972; Fontaine

et al., 1995). Accessory cells were also observed in close association with the

ionocytes in both yellow and silver eels, which would be consistent with a

greater capacity to excrete Na+ and Cl� in SW (Fontaine et al., 1995).

‘‘Silvering’’ may be associated with reduced FW osmoregulatory

capacity, as evidenced by the loss of lamellar ionocytes; the silver eel may

in fact be at a point of no return. The decrease in branchial aquaporin 3

(AQP3) mRNA (Cutler and Cramb, 2002a; Tse et al., 2006) and protein

(Lignot et al., 2002) reported in SW-acclimated eels could also compromise

FW osmoregulatory capacity by impairing cell volume control and other

physiological processes in ionocytes (Cutler et al., 2007). Indeed, dis-

turbances to ion homeostasis (demineralization) may be an important

trigger of FW to SW migration in silver eels (Dutil et al., 1987; Durif et al.,

2009), but this hypothesis requires further investigation.

There is ample evidence that FW to SW transfer by eels is accompanied

by a necessary increase in ingestion of SW. Smith (1932) and Keys (1933)

demonstrated this by preventing water ingestion by blocking the esophagus

with a surgically implanted balloon. This led to uncontrolled water loss in

SW. Maetz and Skadhague (1968) later demonstrated that FW-acclimated

eels ingested water as well, but at lower rates than in SW. As in other

teleosts, ingested SW is desalinated, followed by further dilution in the
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stomach before the water reaches the intestine. In the intestine the bulk of

water uptake is driven by the lower osmolality of the fluid, further facilitated

by Cl� uptake via intestinal NKCC and CFTR (Cutler and Cramb, 2002b;

Ando et al., 2003). Although mRNA AQP3 is located in the esophagus and

gut, expression does not change between FW and SW (Cutler et al., 2007)

and is not immunolocalized to enterocytes as would be expected if it were

involved in water uptake (Lignot et al., 2002). It is more likely that water is

taken up paracellularly, between adjacent enterocytes, as it is in mammals

(Cutler et al., 2007). While Cutler and colleagues have examined the

underlying endocrine basis of AQP regulation (e.g. Martinez-Alvarez et al.,

2005; Cutler et al., 2007), control of drinking behavior and osmoregulatory

capacity of the digestive tract remain poorly characterized.

Silvering is probably cued by changes in photoperiod and lunar cycles

(Tsukamoto et al., 2003), as mediated by changes in endocrine status. The

endocrine control of silvering is somewhat analogous to smoltification in

salmonids (van Ginneken et al., 2007a; also see McCormick, 2013, Chapter

5, this volume). In yellow European eel, silvering may be initiated by T4,

which peaks in the spring and rises modestly in late summer prior to

silvering (van Ginneken et al., 2007a). Similar findings, along with parallel

increases in the b-subunit of thyroid-stimulating hormone (TSH) mRNA,

were reported in Japanese eel (Han et al., 2004). However, Aroua et al.

(2005) did not observe similar variation in T4 profiles, and chronic T4

administration to yellow eels did not induce silvering.

Elevated plasma cortisol and GH act in a dual manner to increase NKA

activity and SW ionocyte number in smolting salmonids (McCormick,

2001), but the actions of these hormones in silvering eels is less clear-cut.

Plasma GH concentrations, at least in female eels, show no distinct temporal

variation in the months preceding silvering (van Ginneken et al., 2007a). It

also seems unlikely that GH plays a significant role in osmoregulation

because hypophysectomy has no effect on FW or SW tolerance in eels

(Olivereau and Ball, 1970). However, there is a two-fold increase in plasma

cortisol in silver compared to yellow European eel (van Ginneken et al.,

2007a). This increase may be causal to increases in ionocyte size and number

as well as increased NKA activity in the gill (Epstein et al., 1971; Wong and

Chan, 2001) and intestine (Epstein et al., 1971). These shifts during silvering

result in the higher salt excretory capacity (Mayer et al., 1967). Increased

cortisol may also promote the mobilization of energy stores needed for

migration (van Ginneken et al., 2007b).

Cortisol also produces an upregulation of AQP1 in the esophagus and

intestine of SW-acclimating European eel (Martinez-Alvarez et al., 2005).

This suggests that in addition to salt extrusion, cortisol plays an important

role in water desalination and water uptake from ingested SW (Hirano and
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Utida, 1968, 1971). It is unlikely that changes in cortisol alone are sufficient

to trigger increased water uptake by the eel digestive tract, and it is still

unclear whether such changes precede SW entry as preparatory adaptations.

Other hormones have been implicated in osmoregulatory processes,

including atrial natriuretic peptide and somatostatin (reviewed by Ando

et al., 2003; Rankin, 2009), but their roles are unclear. The advent of high-

throughput genomic techniques such as microarray analysis (Kalujnaia

et al., 2007) should yield additional clues about the physiological and

hormonal processes that prepare the temperate eels for seaward migration.

5.2.2. Mugilids

The catadromous mullets (Mugilidae) spawn in offshore SW waters, and

the newly hatched larvae drift shoreward into saltmarshes and estuaries

where they develop into juveniles (Moore, 1974; McDowall, 1988; Nordlie,

2000). Striped mullet (Mugil cephalus) larvae and small juveniles are not

capable of osmoregulating in FW until they are least 40 mm in length

(Nordlie et al., 1982; Ciccotti et al., 1995), but survive and grow in 17 ppt to

full SW. While larger juveniles are tolerant of salinities from FW to SW,

they generally remain in elevated salinities (Nordlie, 2000; Cardona, 2006),

where growth is enhanced (Nordlie, 2000; Cardona, 2006). This may be

because the energetic costs of osmoregulation are lowered when the animals

are in oligomesohaline (brackish) waters nearer the osmolality of their own

tissues (Murashige et al., 1991; Cardona, 2006).

The mullets also apparently maintain a state of physiological ‘‘prepared-

ness’’ for a wide range of salinities. FW ionocytes are found on the gill

filament, the interlamellar space, and the lamellae, and increase in density in

response to low salinity (Cicotti et al., 1994; Khodabandeh et al., 2009).

Entry into FW is marked by pronounced increases in gill NKA activity

(Gallis and Bourdichon, 1976; Cicotti et al., 1994), which is localized to gill

ionocytes (Cicotti et al., 1994; Khodabandeh et al., 2009).

SW ionocytes dominate the interlamellar space in SW-acclimated

animals. Like the ionocytes of other euryhaline fishes, these cells are

characterized by an elongated shape and a pronounced apical crypt (Cicotti

et al., 1994). Given the increasing scarcity of temperate eels, and the ability

to rear large numbers of mullet in hatcheries (Lee and Ostrowski, 2001), it is

conceivable that this fish could serve as an important model to further our

understanding of the physiological drivers and basis for catadromy.

5.3. Amphidromous Fishes

Because amphidromous fishes migrate seaward soon after hatching, early

development of SW tolerance is necessitated. The fundamental mechanisms of
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osmoregulation in the amphidromous fishes are probably the same as in their

diadromous counterparts (e.g. McCormick et al., 2003). FW ionocytes play a

more dominant role in FW adults, but SW ionocytes are likely to be more

important in the larvae as they passively drift from FW, through estuaries, and

on to SW. Studies on the amphidromous ayu (Plecoglossus altivelis) of Japan

suggest that increased temperature and salinity lead to more rapid yolk

depletionand impairedgrowth in larvae (Iguchi andTakeshima, 2011).Thegills

probably take on added importance after the yolk sac is resorbed (Rombough,

1988), as described in the juvenile Hawaiian goby (Stenogobius hawaiiensis)

(McCormicket al., 2003).Thesemetamorphosed juveniles captured inFWhave

ionocytes found on both the gill filament and the lamellae. Following

acclimation to SW (20 and 30 ppt), the ionocytes increase in size and number.

This increase is accompanied by a modest increase in the abundance of

basolateral NKCC and NKA proteins, and NKA activity. Immunopositive

staining forCFTR increasesmarkedly in SW, and the protein is restricted to the

apical crypts of the SW ionocytes. Thus, these amphidromous gobies retain

their ability to osmoregulate in SW for some time after FWentry. This is similar

to the pattern noted earlier in the striped bass, but also the estuarine

mummichog (Marshall, 2013, Chapter 8, this volume).

Preparatory adaptation is probably essential for larval amphidromous

fishes. In the Antillian rock-climbing goby (Sicydium punctatum), early

larvae (0–5 d posthatch) select salinities less than 10 ppt, but within a week

volitionally occupy increasing salinities. Exposure to elevated salinities is

associated with an early cessation of migratory behaviors (Bell and Brown,

1995). Yada et al. (2010) used a salinity gradient that allowed larval ayu to

spontaneously move from FW to SW. Their study revealed that a marked

downregulation of prolactin mRNA takes place within 10 days of hatching,

coinciding with movement into SW. Similar reductions in GH are also

observed, although slightly delayed. Whole-body water and Na+ content are

similar in SW-selecting and FW-selecting fishes, but these metrics are

perturbed in larvae abruptly transferred into SW. It is therefore tempting to

speculate that reduced prolactin secretion precedes SW entry in these (and

perhaps other) amphidromous fishes.

Metamorphosis in the amphidromous goby (Sicyopterus lagocephalus)

appears to be triggered by a rise in both T3 and T4 (Taillebois et al., 2011).

Given the importance that these hormones have in osmoregulation and

development in other diadromous fishes, they are likely to influence

osmoregulation following this species’ return to FW. While this work

begins to prove the endocrine control of FW entry, the role of T3 and T4 in

the preparatory adaptation for SW entry as larvae remains a conspicuous

gap in our knowledge. Very little is known of the relationship between

osmotic tolerances and development in amphidromous fishes.
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5.4. Freshwater-Linked and Seawater-Linked Fishes

FW-linked organisms face the challenge of possibly having to

hypoosmoregulate in saline waters, and the current evidence suggests that

this is achieved through the modulation of FW and SW gill ionocyte

abundance and distribution, and corresponding increases in NKA activity

(Morgan et al., 1997; Varsamos et al., 2005; Tseng and Hwang, 2008).

Drinking also increases in FW-linked fishes such as the Mozambique tilapia

following the FW to SW transition, along with decreases in urinary output

(Varsamos et al., 2005). Although the Mozambique tilapia can withstand

full-strength SW, many other FW-linked fishes that facultatively use the

estuary have upper tolerance levels well below full-strength SW. For

instance, Sr:Ca otolith data suggest that wild largemouth bass

(M. salmoides) can withstand salinities approaching 10 ppt in estuaries

along the US Atlantic coast, but tend to avoid higher salinities, probably

due to physiological constraints (Lowe et al., 2009). The bulk of evidence

generated so far would seem to suggest that the FW-linked fishes respond to

more saline waters, rather than making any preparatory physiological

adjustments before entering higher salinities. However, this working

hypothesis could change as more work is done on these estuarine fishes.

Preparatory adaptation is also important in SW-linked fishes such as the

flounder (P. dentatus) and gilthead sea bream (S. aurata), which hatch at sea

in full-strength SW and drift into the estuary (Schreiber and Specker, 2000;

Bodinier et al., 2010). In the summer flounder, thyroid hormone is critical

for triggering metamorphosis, and it probably triggers a shift from larval

ionocytes that function in the dilute salinities of the estuary to juvenile

ionocytes better suited to ion excretion in SW (Schreiber and Specker, 2000).

In the sea bream, osmotic tolerance is dependent upon increased ionocytes

in the integument and the gills, reflecting the variable salinity these fish

experience (Bodinier et al., 2010). More work is needed, however, to

determine whether changes to the osmoregulatory apparatus are initiated

before entry into SW.

The use of the estuary may also be facultative. For instance, SW-linked

juvenile sea bass (Dicentrarchus labrax) reproduce and hatch in saltwater,

with some juveniles entering more dilute BW (Nebel et al., 2005). However,

survival is highly variable in the more dilute waters of the estuary and rivers

up which some animals are known to migrate (Lemaire et al., 2000;

Varsamos, 2002). The underlying physiological basis for the inability of

some fish to cope with more dilute waters appears to be related to the lack of

renal tubules, which makes it impossible for the fish to produce the copious

amounts of dilute (hypoosmotic) urine needed to counteract water uptake in

more dilute waters (Nebel et al., 2005). While these differences may be
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genetically predetermined (Nebel et al., 2005), these findings also suggest

that sea bass may have a narrow window of opportunity to take advantage

of the estuary, before ontogenetically determined changes more suited to life

in SW environments become irreversible. Ultimately, a better understanding

of the underlying physiological mechanisms, and the endogenous (endocrine

signals, genetic preprogramming) and exogenous signals (e.g. photoperiod,

temperature) that regulate these processes, is needed to more fully

understand habitat use by FW-linked and SW-linked fishes.

6. GROWTH AND OSMOREGULATION

Osmoregulating fish in FW or SW must actively transport ions,

necessitating energy expenditures associated with standard metabolic rate.

Assuming hypoosmoregulation and hyperosmoregulation both require

active energy inputs, an isosmotic environment of approximately 12 ppt

should be least taxing (Potts, 1954; Watanabe et al., 1989; Wootton, 1990;

Gaumet et al., 1995; Imsland et al., 2001; Rocha et al., 2005), as

demonstrated for Mozambique tilapia (Oreochromis mossambicus) (Febry

and Lutz, 1987; Morgan et al., 1997; Chang et al., 2007). Observed patterns

diverge from this construct, varying with species, ontogeny, and season

(Gutt, 1985; Morgan and Iwama, 1991; Lambert et al., 1994; Deacon and

Hecht, 1999). The energy cost of osmoregulation in different salinities may

be relatively modest in teleosts (Boeuf and Payan, 2001) but can be

significant when salinity shifts rapidly (Du Preez et al., 1990; Morgan et al.,

1997; Morgan and Iwama, 1999). Salinity effects can be acute. If unable to

offset the mass actions of the surrounding environment, disruption of ion

balance occurs in advance of metabolic failure and mortality (Woo and

Fung, 1981). An expanded examination of the energetics of osmoregulation

can be found in Chapter 9 of this volume (Brauner et al., 2013).

Salinity may impact metabolism directly (increasing standard metabolic

rate) or indirectly through food conversion efficiency, endocrine shifts

associated with acclimation, or changing feeding behavior (Boeuf and

Payan, 2001). Direct metabolic costs of osmoregulation in SW have been

reported to be as low as approximately 10% in recent studies (e.g. Kidder

et al., 2006) but as much as 50% in others (Boeuf and Payan, 2001). Because

endocrine factors that affect osmoregulation are also important for growth

(e.g. IGF-I and GH) (McCormick, 1996; Mancera and McCormick, 1998),

the impact of salinity may transcend a simple energetic cost. Because

drinking is an active part of the osmoregulatory process in SW, the scope for

growth in SW may be influenced by the increased ATP demands that SW
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ingestion could place on the enterocytes (absorptive cells) of the gastro-

intestinal tract. As a result, energy partitioning could influence the external

and internal milieu of the gastrointestinal tract, influencing digestion and

food conversion efficiency (DeSilva and Perera, 1976; MacLeod, 1977;

Ferraris et al., 1986). For many fish, salinity does influence growth and this

optimum can be empirically assessed.

Many FW spawners (FW-linked, anadromous, and amphidromous

fishes) have higher growth rates in salinities at or below isosmotic (0–

12 ppt). Even some stenohaline FW species exhibit increased growth at low

salinities, below 2 ppt, by increasing their food conversion rate (Boeuf and

Payan, 2001), perhaps by offsetting the costs of ion uptake in FW (e.g. the

FW catfish Mystus vittatus) (Arunachalam and Reddy, 1979). As the

environment becomes more saline, growth scope declines (Britz and Hecht,

1989; Morgan and Iwama, 1991; Brown et al., 1992). For green sturgeon

there is no difference in metabolic rate in FW or SW, but osmotic

perturbations in SW may prevent entry into SW or confer a growth

disadvantage (Allen and Cech, 2007). Lower growth rates in SW have been

observed in other sturgeon juveniles (e.g. shortnose sturgeon) (Jarvis and

Ballantyne, 2003). Some species have fairly defined optima, e.g. approxi-

mately 7 ppt for striped bass (Brown et al., 1992). For some amphidromous

fishes, the early growth phase may be optimized in BW. For the ayu high

salinity results in the acceleration of yolk depletion and reduced growth

(Iguchi and Takeshima, 2011). The distribution of ayu larvae near shore

through the yolk-sac and larval stage (Tago, 2002; Yagi et al., 2006) suggests

the significance of low-salinity BW in their survival.

Conversely, many SW-linked and catadromous fished generally have

increasing growth near or above isosmotic (usually 5–18 ppt; Boeuf and

Payan, 2001; Morrison and Secour, 2003; Jessop et al., 2008; Acou et al.,

2003; Melia et al., 2006). While the estuary may be viewed as an

environment to which many SW fishes are not adapted, many species

exhibit greater growth at lower salinities, e.g. European flounder (Pla-

tichthys flesus) (Gutt, 1985) and Atlantic cod (Gadus morhua) (Lambert

et al., 1994). Increased growth rate may not necessarily indicate the lowest

cost of osmoregulation, but an integration of processes. Cod grown at 7 ppt

had higher growth than at 28 ppt owing to greater food conversion

efficiency (Boeuf and Payan, 2001), and feeding can decrease in juvenile cod

at higher salinities (Lambert et al., 1994). Changing conditions can change

feeding dynamics (Le Bail and Boeuf, 1997). For turbot (Scophthalmus

maximus), greater growth at or near isosmotic salinity was linked to

increased food ingestion (Gaumet et al., 1995; Imsland et al., 2001).

It should be noted that assessment of metabolic costs and growth is

usually accomplished in a static setting and does not incorporate costs of

6. FRESHWATER TO SEAWATER TRANSITIONS IN MIGRATORY FISHES 293



movements through varying salinity environments. Swimming studies on

tilapia (Oreochromis niloticus) (Farmer and Beamish, 1969) and O.

mossambicus (Febry and Lutz, 1987) indicated that oxygen consumption

at 12 ppt was lower than in full FW or SW, yet growth studies at near

isotonic conditions provide less clear results (Morgan and Iwama, 1991;

Boeuf and Payan, 2001). Such apparent differences may be associated with

the multiple functions of the gill for respiration and osmoregulation. Across

a steep osmotic gradient, there is a theoretical diminishing return on

increased gill perfusion due to the cost of ion transport (Boeuf and Payan,

2001) leading to an osmoregulatory compromise (Nilsson, 1986).

Growth and metabolism are effective physiological assessments not only

of salinity influence, but also of the optimal environmental conditions of a

fish (Cech, 1990). Modeling of environmental parameters in an ecological

framework has provided valuable insight into the role of osmoregulation in

bluegill (Lepomis macrochirus) (Neill et al., 2004), red drum (Sciaenops

ocellatus) (Fontaine et al., 2007), and juvenile sole (Solea solea) (Fonseca

et al., 2010). For many fish in the estuary, salinity in conjunction with

temperature and oxygen can define suitable habitat (Imsland et al., 2001).

For example, white perch have reduced feeding and increased metabolic

costs associated with salinities greater than 16 ppt (Hanks and Secor, 2011)

and these fish are seldom observed in salinities that exceed this level (Setzler-

Hamilton, 1991; Nemerson and Able, 2004). Juvenile white perch exhibit the

greatest growth rates in salinities from 4 to 8 ppt (Kerr and Secor, 2009), but

this benefit is not independent of temperature and dissolved oxygen. The

interaction of these environmental factors has been characterized as a

‘‘habitat squeeze’’ (Coutant and Benson, 1990; Niklitschek and Secor, 2005;

Hanks and Secor, 2011) where temperature increases escalate basal

metabolic demands (Guderley and Pörtner, 2010), further perturbing the

osmorespiratory compromise. In addition to increased metabolic rates

under hypoxic conditions, food consumption decreases (Hanks and Secor,

2011). These three environmental factors therefore limit rearing areas for

juvenile white perch through their impact on growth and, probably,

performance (Miltner et al., 1995; Lankford et al., 2001; Harrison and

Whitfield, 2006). It is not unreasonable to assume that other fishes would be

similarly limited.

7. CONCLUSIONS AND PERSPECTIVES

Over the past few decades advances in a suite of technologies have

informed both the ‘‘where’’ and ‘‘how’’ of diadromous migrations.
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Telemetry has long been used for direct tracking of large species (e.g.

sturgeon) (Taverny et al., 2002; Kelly et al., 2007) but technological

advances have allowed effective tracking even for moderately sized juveniles

such as salmon smolts (e.g. Holbrook et al., 2011). The advent of Sr:Ca

microchemical analysis of otoliths, and the correlation with salinity,

changed the playing field in the study of migrating fishes (Kalish, 1990;

Secor, 1992; Secor et al., 1995; de Pontual et al., 2003). This approach has

advanced our understanding of migratory patterns on one hand while

blurring the lines of stereotyped life history variants on the other. The use of

stable isotopes has also revealed complexities in movement patterns. Isotope

signatures can reflect integration of diet over several weeks, allowing spatial

feeding patterns to be inferred over a brief timescale (Hesslein et al., 1993;

Barnes and Jennings, 2007). In addition to using d13C and d15N measures,

d34S has likewise emerged as an important tool for assessing movement in

estuarine fishes (Hoffman et al., 2007; Fry and Chumchal, 2011). Less

technical approaches have also been informative. Trnski (2002) physically

followed the larvae of estuary-dependent coastal spawners using scuba gear.

Together, these efforts have revealed the degree to which many fish that

migrate between FW and SW are facultative in their use of the estuary

(Gerking, 1994; Blaber, 1997; Wootton, 1999; Elliott and Hemingway, 2002;

Elliott et al., 2007). The construct of ‘‘contingent behaviors’’ as described by

Kerr and Secor (2010) is useful in describing variations in migratory

patterns.

Understanding dynamic habitat shifts of the estuary and their

importance to euryhaline fishes will be critical as estuarine waters become

more highly impacted by human activity (Able, 1999; Hoss et al., 1999;

Quinlan and Crowder, 1999). The recruitment of ecologically important

species like the anchovy (Engraulis encrasicolus) is strongly linked to river

inflow (Chı́charo et al., 2001; Drake et al., 2007) such that impoundments

would be likely to compromise anchovy success (Morais et al., 2009; Morais

et al., 2010). Degradation of estuarine conditions has been linked to lower

survival rates in salmonine species (Magnusson and Hilborn, 2003), and

there is no reason to suspect that these effects would be restricted to

salmonines in the reduction of life history and species diversity. Longer term

stressors due to factors such as climate change may influence settlement

habitats (Able et al., 2006). A northward creep of distributions of euryhaline

fishes has already begun to reshape temperate estuaries (Nicolas et al.,

2010). Flow regimens into estuarine systems impact the suitability of the

estuary as a rearing habitat through their influence on salinity, temperature,

and oxygen (Chı́charo et al., 2006; Lassalle and Rochard, 2009). Hanks and

Secor (2011) speculate that this ‘‘habitat squeeze’’ would be exacerbated by

climate change scenarios (e.g. Najjar et al., 2010) as regions of hypoxia are
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more likely to persist during the summer months of temperate estuaries

(Breitburg et al., 2009). Industrial, agricultural, and municipal contaminants

and reduced FW input could also have additive or synergistic impacts on

available habitat (Cooper and Brush, 1991; Najjar et al., 2000; Niklitschek

and Secor, 2005).

The estuarine environment is also likely to be a frontline for many

invasive species. Salinity tolerance will probably define the speed and extent

of expansions of invasives (e.g. armored catfish) (Capps et al., 2011) which

may opportunistically use fluctuations in river plumes as a means of

dispersal (Brown and St. Pierre, 2001; Bringolf et al., 2005; Scott et al.,

2008). Non-native piscivores such as the largemouth bass (M. salmoides)

may threaten estuary-dependent SW species along the Atlantic seaboard

(Weyl and Lewis, 2006; Wasserman and Strydom, 2011; Peer et al., 2006;

Norris et al., 2010). Invasives may also influence native euryhaline fishes

through direct interaction, such as through competition between juveniles of

SW-spawned and non-native fish species (Wathen et al., 2011; Wathen et al.,

2012) or through diet overlap (Skelton, 1993; Mansfield and McCardle,

1998).

These ecological challenges are inextricably linked to the physiological

abilities and ontogenic requirements of migrating species. Efforts to

characterize the physiological adjustments that precede or accompany the

FW to SW transition will inform measures to counter the

inevitable challenges that these euryhaline fishes face. Although the past

decade has seen an explosion of research on osmoregulation in migratory

euryhaline species, much of the field remains open territory. However,

several themes are emerging. There are notable commonalities between

salmonine smoltification and many of the preparatory adaptations of other

species described in this chapter. Like smolting salmonines, sea lamprey,

alosines, and catadromous eels exhibit increases in NKA abundance and

activity, as well as in branchial ionocytes, prior to seaward migration. In

advance of SW entry (and/or upon SW entry) there is a shift from

predominantly FW ionocytes to SW ionocytes. While preparatory adapta-

tion may be obligatory, some fishes are quite plastic. Other species (e.g.

alewife and striped bass) or other life stages (e.g. yellow eels) exhibit an

impressive capacity to move between FW and SW. These fishes remain in a

state of readiness, perhaps mediated by rapid control of ionocyte function.

Cortisol is a critical endocrine factor that mediates the changes in gill

ionocyte structure and function in anticipation of SW entry. As in

salmonines, thyroid hormone probably plays an important role by

promoting corticosteroid receptor proliferation. The critical role played by

T4 and T3 in initiating metamorphosis (e.g. in lampreys, flounders, and at

least one species of ampidromous goby) appears to be directly tied to the
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preparatory adaptation process. It also appears likely, as in salmonids, that

cortisol acts in concert with GH to initiate SW ionocyte proliferation

(McCormick, 2001; Evans et al., 2005). Our understanding of ion and water

transport processes in the digestive tract has advanced substantially (Ando

et al., 2003; Grosell, 2011) but research on the endocrine control of

preparatory changes is limited. Less is known about the preparative changes

of the kidneys, as they shift from the role of ‘‘bilge pump’’ to an organ of

water conservation and divalent ion excretion. Although research is now

beginning to shed light on cell-sensing and intracellular signaling pathways,

particularly the interactions between IGF-I and EGF, and the MAP kinases

in sensing cell volume, much more work is needed in this area.

A great deal more integrative research is therefore needed to learn how

environmental, somatic, temporal, and physiological factors interact to

allow fish to undergo the dramatic and critical transition from FW to SW.

With the advent and development of more sophisticated techniques (e.g. cell

isolation, morphilino, immunohistochemistry) and continual advances in

genomics and proteomics, the tools are currently available to address the

data gaps identified here. We are in a period of great discovery and of great

potential. Integrative research approaches can not only inform our

understanding of fish physiology, but also provide fisheries managers with

the information they need to protect these fascinating and vulnerable

species.
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Lim, P., Meunier, F., Keith, P. and Noël, P. (2002). Atlas des poissons d’eau douce de la

Martinique. Patrim. Nat. 51, 1–120.

Limburg, K. E. (1996).Modelling the ecological constraints on growth andmovement of juvenile

American shad (Alosa sapidissima) in the Hudson River Estuary. Estuaries 19, 794–813.

Limburg, K. E. (1998). Anomalous migrations of anadromous herrings revealed with natural

chemical tracers. Can. J. Fish. Aquat. Sci. 55, 431–437.

Limburg, K. E. (2001). Through the gauntlet again: demographic restructuring of American

shad by migration. Ecology 82, 1584–1596.

Limburg, K. E. and Ross, R. M. (1995). Growth and mortality rates of larval American shad,

Alosa sapidissima, at different salinities. Estuaries 18, 335–340.

Livingston, R. J. (1976). Diurnal and seasonal fluctuations of organisms in a north Florida

estuary. Estuar. Coast. Mar. Sci. 4, 373–400.

Lobry, J., Mourand, L., Rochard, E. and Elie, P. (2003). Structure of the Gironde estuarine fish

assemblages: a comparisonofEuropean estuaries perspective.Aquat.LivingResourc. 16, 47–58.

Lochet, A., Jatteau, P., Tomás, J. and Rochard, E. (2008). Retrospective approach to

investigating the early life history of a diadromous fish: allis shad (Alosa alosa L.) in the

Gironde–Garonne–Dordogne watershed. J. Fish Biol. 72, 946–960.

Lochet, A., Boutry, S. and Rochard, E. (2009). Estuarine phase during seaward migration for

allis shad (Alosa alosa) and twaite shad (Alosa fallax) future spawners. Ecol. Freshw. Fish.

18, 323–335.

Logan, A. G., Morris, R. and Rankin, J. C. (1980). A micropuncture study of kidney-function in

the river lamprey (Lampetra fluviatilis) adapted to sea water. J. Exp. Biol. 88, 239–247.

Loneragan, N. R., Potter, I. C., Lenanton, R. C. J. and Caputi, N. (1986). Spatial and seasonal

differences in the fish fauna in the shallows of a largeAustralian estuary.Mar.Biol. 92, 575–586.

Lord, C., Brun, C., Hautecoeur, M. and Keith, P. (2010). Comparison of the duration of the

marine larval phase estimated by otolith microstructural analysis of three amphidromous

Sicyopterus species (Gobiidae: Sicydiinae) from Vanuatu and New Caledonia: insights on

endemism. Ecol. Freshw. Fish. 19, 26–38.

Lotrich, V. A. (1975). Summer home range and movements of Fundulus heteroclitus in a tidal

creek. Ecology 56, 191–198.

Love, M. (1996). Probably More Than You Want to Know About the Fishes of the Pacific Coast.

Santa Barbara, CA: Really Big Press.

Lowe, D. R., Beamish, F. W. H. and Potter, I. C. (1973). Changes in proximate body

composition of landlocked sea lamprey Petromyzon marinus (L.) during larval life and

metamorphosis. J. Fish Biol. 5, 673–682.

JOSEPH ZYDLEWSKI AND MICHAEL P. WILKIE312



Lowe, M. R., DeVries, D. R., Wright, R. A., Ludsin, S. A. and Fryer, B. J. (2009). Coastal

largemouth bass (Micropterus salmoides) movement in response to changing salinity. Can.

J. Fish. Aquat. Sci. 66, 2174–2188.

Lutz, B. L. (1972). Body composition and ion distribution in the teleost Perca juviatilis. Comp.

Biochem. Physiol. A 41, 181–193.

MacLeod, M. G. (1977). Effects of salinity on fasted rainbow trout (Salmo gairdneri).Mar. Biol.

43, 103–108.

Madsen, S. S., McCormick, S. D., Young, G., Endersen, J. S., Nishioka, R. S. and Bern, H. A.

(1994). Physiology of seawater acclimation in the striped bass, Morone saxatilis

(Walbaum). Fish Physiol. Biochem. 13, 1–11.

Madsen, S. S., Jensen, L. N., Tipsmark, C. K., Kiilerich, P. and Borski, R. J. (2007).

Differential regulation of cystic fibrosis transmembrane conductance regulator and Na+,

K+-ATPase in gills of striped bass, Morone saxatilis: effect of salinity and hormones.

J. Endocrinol. 192, 249–260.

Maes, J., Stevens, M. and Ollevier, F. (2005). The composition and community structure of the

ichthyofauna of the upper Scheldt estuary: synthesis of a 10-year data collection (1991–

2001). J. Appl. Ichthyol. 21, 86–93.

Maetz, J. and Skadhaug, E. (1968). Drinking rates and gill ionic turnover in relation to external

salinities in eel. Nature 217, 371–373.

Magnusson, A. and Hilborn, R. (2003). Estuarine influence on survival rates of coho

(Oncorhynchus kisutch) and Chinook salmon (Oncorhynchus tshawytscha) released from

hatcheries on the US Pacific coast. Estuaries 26, 1094–1103.

Mancera, J. M. and McCormick, S. D. (1998). Osmoregulatory actions of the GH/IGF axis in

non-salmonid teleosts. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 121, 43–48.

Manderson, J. P., Pessutti, J., Hilbert, J. G. and Juanes, F. (2004). Shallow water predation risk

for a juvenile flatfish (winter flounder; Pseudopleuronectes americanus Walbaum) in a

northwest Atlantic estuary. J. Exp. Mar. Biol. Ecol. 304, 137–157.

Mansfield, S. and McCardle, B. H. (1998). Dietary composition of Gambusia affinis (Family

Poeciliidae) populations in the northern Waikato region of New Zealand. N. Z. J. Mar.

Freshw. Res. 32, 375–383.

Marshall, S. and Elliott, M. (1998). Environmental influences on the fish assemblage of the

Humber Estuary, UK. Estuar. Coast. Shelf Sci. 46, 175–184.

Marshall, W. S. (2002). Na+, Cl�, Ca2+ and Zn2+ transport by fish gills: retrospective review

and prospective synthesis. J. Exp. Zool. 293, 264–283.

Marshall, W. (2013). Osmoregulation in estuarine and intertidal fishes. In Fish Physiology, Vol.

32, Euryhaline Fishes (eds. S. D. McCormick, A. P. Farrell and C. J. Brauner), pp. 395–434.

New York: Elsevier.

Marshall, W. S. and Grosell, M. (2006). Ion transport, osmoregulation, and acid–base balance.

In The Physiology of Fishes (eds. D. H. Evans and J. B. Claiborne), 3rd edn, pp. 177–230.

Boca Raton, FL: CRC Press.

Martin, T. J. (1990). Osmoregulatory in three species of Ambassidae (Osteichthyes:

Perciformes) from estuaries in Natal, South Africa. Can. J. Zool. 25, 229–234.

Martinez-Alvarez, R. M., Sanz, A., Garcia-Gallego, M., Domezain, A., Domezain, J.,

Carmona, R., Ostos-Garrido, M. D. and Morales, A. E. (2005). Adaptive branchial

mechanisms in the sturgeon (Acipenser naccarii) during acclimation to saltwater. Comp.

Biochem. Physiol. A Mol. Integr. Physiol. 141, 183–190.

Mayer, N., Maetz, J., Chan, D. K. O., Forster, M. and Jones, I. C. (1967). Cortisol, a

sodium excreting factor in eel (Anguilla anguilla L.) adapted to sea water. Nature 214,

1118–1120.

6. FRESHWATER TO SEAWATER TRANSITIONS IN MIGRATORY FISHES 313



McBride, R. S., MacDonald, T. C., Matheson, R. E., Rydene, D. A. and Hood, P. B. (2001).

Nursery habitats for ladyfish, Elops saurus, along salinity gradients in two Florida estuaries.

Fish. Bull. 99, 443–458.

McCleave, J. D. and Kleckner, R. C. (1982). Selective tidal stream transport in the estuarine

migration of glass eels of the American eel (Anguilla rostrata). J. Cons. Int. Explor. Mer. 40,

262–271.

McCleave, J. D. and Wippelhauser, G. S. (1987). Behavioral aspects of selective tidal stream

transport in juvenile American eels (Anguilla rostrata). Am. Fish. Soc. Symp. 1, 138–150.

McCormick, S. D. (1994). Ontogeny and evolution of salinity tolerance in anadromous

salmonids: hormones and heterochrony. Estuaries 17, 26–33.

McCormick, S. D. (1996). Effects of growth hormone and insulin-like growth factor I on

salinity tolerance and gill Na+,K+-ATPase in Atlantic salmon (Salmo salar): interaction

with cortisol. Gen. Comp. Endocrinol. 101, 3–11.

McCormick, S. D. (2001). Endocrine control of osmoregulation in teleost fish. Am. Zool. 41,

781–794.

McCormick, S. D. (2013). Smolt physiology and endocrinology. In Fish Physiology, Vol. 32,

Euryhaline Fishes (eds. S. D. McCormick, A. P. Farrell and C. J. Brauner), pp. 199–251.

New York: Elsevier.

McCormick, S. D. and Naiman, R. J. (1984). Osmoregulation in the brook trout, Salvelinus

fontinalis. II. Effects of size, age and photoperiod on seawater survival and ionic regulation.

Comp. Biochem. Physiol. A 79, 17–28.

McCormick, S. D. and Saunders, R. L. (1987). Preparatory physiological adaptations for

marine life in salmonids: osmoregulation, growth and metabolism. Common strategies of

anadromous and catadromous fishes. Am. Fish. Soc. Symp. 1, 211–229.

McCormick, S. D., Shrimpton, J. M. and Zydlewski, J. D. (1997). Temperature effects on

osmoregulatory physiology of anadromous fish. In Global Warming Implications for

Freshwater and Marine Fish. Society for Experimental Biology, Seminar Series (eds. C. M.

Wood and D. G. McDonald), Vol. 61. Cambridge: Cambridge University Press.

McCormick, S. D., Hansen, L. P., Quinn, T. P. and Saunders, R. L. (1998).

Movement, migration and smolting in Atlantic salmon. Can. J. Fish. Aquat. Sci. 55

(Suppl. 1), 77–92.

McCormick, S. D., Sundell, K., Bjornsson, B. T., III, Brown, C. L. and Hiroi, J. (2003).

Influence of salinity on the localization of Na+/K+-ATPase, Na+/K+/2Cl� cotransporter

(NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius

hawaiiensis). J. Exp. Biol. 206, 4575–4583.

McDonald, D. G. and Milligan C. L (1992). Chemical properties of the blood. In Fish

Physiology, Vol. 12B (eds. W. S. Hoar, D. J. Randall and A.P. Farrell), pp. 56–113. New

York: Academic Press.

McDowall, R. M. (1987). The occurrence and distribution of diadromy among fishes, Vol. 1

In Common Strategies of Anadromous and Catadromous Fishes (eds. M. J. Dadswell, R. J.

Klauda, C. M. Moffit, R. L. Saunders, R. A. Rulifson and J. E. Cooper), pp. 1-13,

American Fisheries Society Symposium, Bathesda, MD.

McDowall, R. M. (1988). Diadromy in Fishes: Migrations Between Freshwater and Marine

Environments. London: Croom Helm.

McDowall, R. M. (1990). When galaxiid and salmonid fishes meet – a family reunion in New

Zealand. J. Fish Biol. 37, 35–43.

McDowall, R. M. (1992). Diadromy – origins and definitions of terminology. Copeia 1992,

248–251.

McDowall, R. M. (1999). Driven by diadromy: its role in the historical and ecological

biogeography of the New Zealand freshwater fish fauna. Ital. J. Zool. 65, 73–85.

JOSEPH ZYDLEWSKI AND MICHAEL P. WILKIE314



McDowall, R. M. (2004). Ancestry and amphidromy in island freshwater fish faunas. Fish Fish.

5, 75–85.

McDowall, R. M. (2007). On amphidromy, a distinct form of diadromy in aquatic organisms.

Fish Fish. 8, 1–13.

McDowall, R. M. (2008). Early hatch: a strategy for safe downstream larval transport in

amphidromous gobies. Rev. Fish Biol. Fish. 19, 1–8.

McEnroe, M. and Cech, J. J., Jr. (1985). Osmoregulation in juvenile and adult white sturgeon,

Acipenser transmontanus. Environ. Biol. Fish. 14, 23–30.

McKenzie, D. J., Cataldi, E., Di Marco, P., Mandich, A., Romano, P., Ansferri, S., Bronzi, P.

and Cataudella, S. (1999). Some aspects of osmotic and ionic regulation in Adriatic

sturgeon (Acipenser naccarii). II: Morpho-physiological adjustments to hyperosmotic

environments. J. Appl. Ichthyol. 15, 61–66.

McKenzie, D. J., Cataldi, E., Romano, P., Taylor, E. W., Cataudella, S. and Bronzi, P. (2001).

Effects of acclimation to brackish water on tolerance of salinity challenge by young-of-the-

year Adriatic sturgeon (Acipenser naccarii). Can. J. Fish. Aquat. Sci. 58, 1113–1121.

McKinnon, L. J. and Gooley, G. J. (1998). Key environmental criteria associated with the

invasion of Anguilla australis glass eels into estuaries of southeastern Australia. Bull. Fr.
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